Practical Methods for Working with EHR Data

CIDA Big Data Seminar Series

Laura K. Wiley, PhD
Assistant Professor
Biomedical Informatics & Personalized Medicine

Overview

- Introduction to EHRs
- Landscape of EHR-based Research
 - Types & Limitations of EHR Data
 - Phenome-Wide Association Studies
 - Computational Phenotyping
- CU Resources and How to Learn More

What is an EHR?

How to Leverage EHRs for Research?

EHRs Require Paradigm Shift

EHR – Based Research Landscape

What Types of Data are in an EHR?

Data bases

Structured

Diagnosis codes				
Fake ID	ENTRY_DAT	CODE		
34068	5/13/2001	41.85		
37660	8/6/2002	79.99		
140680	8/31/2003	79.99		
23315	5/14/2003	112		
75936	7/9/2004	117.9		
	·			

Lab tests

Fake ID	TEST	ENTRY_DAT	VALU
3536	pO2	1/23/1996	314
72921	LDL	2/5/1996	34
102460	pCO2	1/26/1996	45
135043	HDL	1/25/1996	35
135432	MonAb	1/24/1999	0.16

Semi-Structured

Problem lists:

- ---- Medications known to be prescribed:
 Keppra 750 mg 1/2 tab q am and pm
 Dexilant 60 mg by mouth daily aspirin 325 mg 1 tablet by mouth daily clopidogrel 75 mg tablet 1 tablet by mouth daily
- ---- Known adverse and allergic drug reactions: Sulfa Drugs
- ---- known significant medical diagnoses: Seizure disorder Aneurysm Heartburn
- ---- Known significant operative and invasive procedures: 2003 Appendectomy 2005 Stents put in **DATE [Aug 29 05]

Unstructured

Clinical notes

EXAM: BILATERAL DIGITAL SCREENING MAMMOGRAM WITH CAD, **DATE[Mar 16 01]: COMPARISON: **DATE[Jul 01 01] TECHNIQUE: Standard CC and MLO views of both breasts were obtained, FINDINGS; The breast parenchyma is heterogeneously dense. The pattern is extremely complex with postsurgical change seen in the right upper outer quadrant and scattered benign-appearing calcification seen bilaterally. A possible asymmetry is seen in the superior aspect of the left breast. The parenchymal pattern otherwise remains stable bilaterally, with no new distortion or suspicious calcifications. IMPRESSION: RIGHT: No interval change. No current evidence of malignancy., LEFT; Possible developing asymmetry superior aspect left breast for which further evaluation by true lateral and spot compression views recommended. Ultrasound may also be needed.. RECOMMENDATION: Left diagnostic mammogram with additional imaging as outlined above., A left breast ultrasound may also be needed, BI-RADS Category 0: Incomplete Assessment - Need additional imaging evaluation. IMPRESSION: RIGHT: No interval change. No current evidence of malignancy....

Tools

Wei, et. al. Genome Med 2015 PMID: 25937834

Structured Data - ICD Codes

- International Classification of Disease (ICD)
- In US, we use ICD-10-CM (ICD-9-CM < October 2015)
- Diagnostic codes:
 - ICD-9-CM: ~13,500
 - ICD-10-CM: >70,000

W59.22XD Struck by Turtle, Subsequent Encounter

Structured Data – ICD Codes

False Positives

False Negatives

Structured Data – Laboratory Data

Positives

- Closer to Biology!
- Continuous Variable
 - Moar Power!
 - No controls!
- Look at Extremes

<u>Challenges</u>

- Multiple panels w/ same Labs
- Multiple lab values/ person
- Method & Reference range change over time
- UNITS!
- Junk
 - (PHONE, /, <4, Duplicate Order, Mislabeled Specimen, Result)

Structured(ish) Data - Medications

Formatting

- E-Prescribed: Name, size, frequency structured
- Dosing Instructions often semi or unstructured
- Also found in problem list and clinical notes -> unstructured

<u>Challenges</u>

- Atorvastatin = Lipitor
- Atorvastatin + Ezetimibe = Liptruzet
- Atorvastatin/Simvastatin both HMG-CoA Reductase Inhibitors
- Atorvastatin & Ezetimibe both cholesterol lowering drugs
- Order -> Fill -> Taking the Drug
- Identifying Discontinuation Difficult

Unstructured Data – Clinical Text

- Goal: Convert Unstructured Text -> Structured Data
- NLP Tools:
 - Concept-indexing:
 - "mad cow disease" → C0120202
 - "Bovine Spongiform Encephalopathy" → C0120202
 - Negation/certainty tagging:
 - "no evidence of diabetes"
 - Identifying temporal expressions:
 - "colonoscopy 5 years ago"
 - ... and much more

EHR – Based Research Landscape

What is (Computational) Phenotyping?

- Translates observed characteristics or manifestations of a human condition/disease
- Utilizes clinical criteria from the EMR to identify subjects meeting definition

What is Computational Phenotyping?

Computational Phenotyping Overview

Population

Colorado Center for Personalized Medicine

Biobank

Inclusion

Must have

Exclusion

Must NOT Have

Case/Control Definitions

Steroid-Induced Osteonecrosis

How Do You Know It Worked?

Caution – Danger Ahead

- Defining Controls is HARD
 - •Clinical?
 - Biological?

EHR – Based Research Landscape

Phenome-Wide Association Study (PheWAS)

Denny JC et al. <u>PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations</u>. Bioinformatics. 2010 May 1;26(9):1205-10.

When to Use PheWAS?

How Does PheWAS Work?

How Does PheWAS Work?

PheWAS R Package

- https://github.com/PheWAS/PheWAS
- Contains:
 - Translation Tables (ICD9-CM, ICD10-CM, ICD10)
 - Analysis Scripts
 - Multiple Testing Correction (Bonferroni & FDR)

You Have A Significant Hit! Now What?

- PheWAS Code Correlation Which is the driver?
- Check Genotype & Phenotype Frequencies
- Is this plausible/meaningful?
- Look at individual patients w/ Code

PheWAS codes are <u>NOT</u> phenotypes

EHR – Based Research Landscape

CU Resources

Clinical Trial Recruitment

EMR Repository **Analytics/ Learning Healthcare System**

Colorado Center for Personalized Medicine

Biobank

Link to Biobank for Genetic Research

Center for Innovative Design & Analysis

colorado school of public health

Population Health/ Epidemiology

Interested in Learning More?

Clinical Data Science Specialization

Created By:

⊘ LearnClinicalDataScience.org

Industry Partner:

Hosted By:

coursera

FREE For CU Faculty, Staff, & Students!

- 1. Log in to my.cu.edu
- Open "Training" (if student) or "CU Resources Home" > "Training" (if staff/faculty)
- 3. Select "CU on Coursera"
- 4. Click "Join for Free"
- 5. Click "Log in with University of Colorado"

How To Get Help

- Health Data Compass: www.healthdatacompass.org
- Colorado Center for Personalized Medicine Biobank: www.cobiobank.org
- CIDA: <u>http://www.ucdenver.edu/academics/colleges/PublicHealth/research/centers/CBC/Pages/welcome.aspx</u>
- D2V: <u>http://www.ucdenver.edu/academics/colleges/medicalschool/programs/D2V/Pages/D2V.aspx</u>