Big Data Seminar Series: OMICS Data

Nov 5, 2019

Katerina Kechris, Lauren Vanderlinden, Harry Smith
Department of Biostatistics and Informatics
Colorado School of Public Health

Outline

- 1. Current technologies available for the various omics types (Kechris)
- 2. Insights available using current omics analysis methods (Smith)

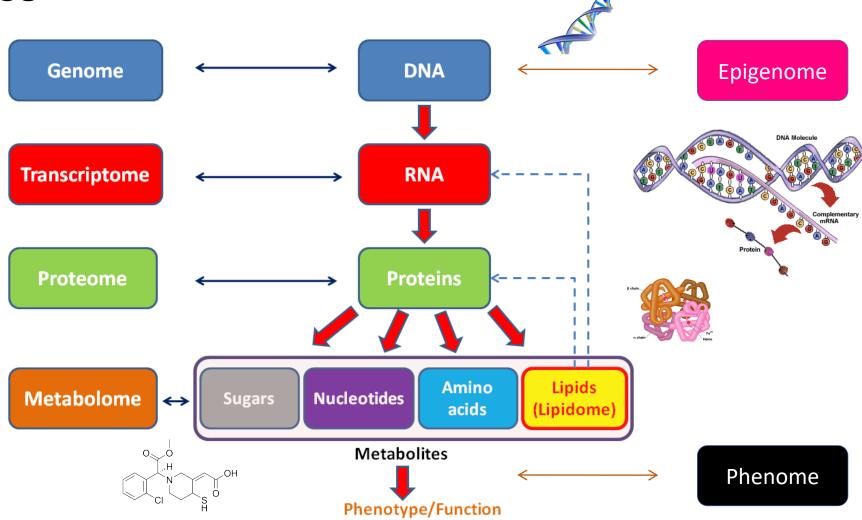
3. Tips for handling the common statistical themes in omics data analysis (Vanderlinden)

4. Questions and discussion to plan your omics study

Part 1: Background

Katerina Kechris

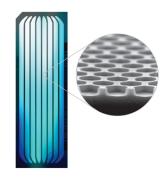
Omics



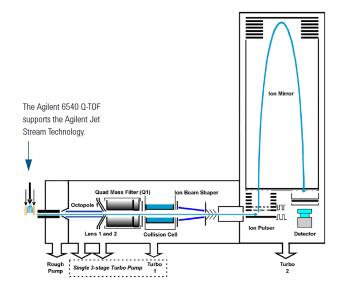
Adapted from http://www.sciencebasedmedicine.org http://www.scientificpsychic.com/fitness/transcription.gif
http://themedicalbiochemistrypage.org/images/hemoglobin.jpg http://upload.wikimedia.org/wikipedia/commons/c/c6/Clopidogrel active metabolite.png

Technologies

1. Microarrays (RNA/DNA)



3. Mass-spectrometry (proteins/metabolites)



Center for Innovative Design & Analysis colorado school of public health

DNA

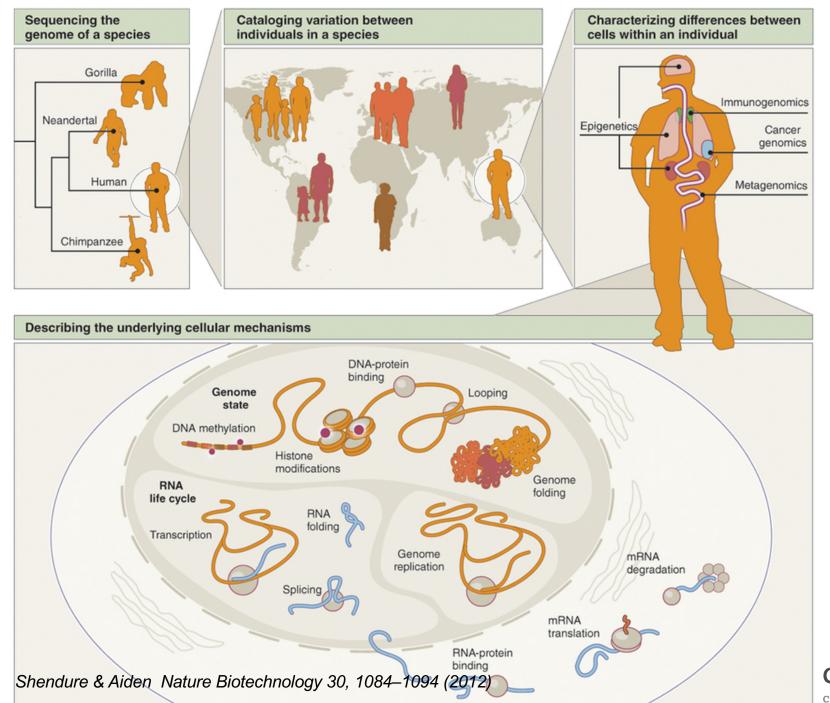
- Genome
 - Across species
 - Within population
- Exome
- Single nucleotide polymorphisms
- Chromosome conformations

DNA Modifications & Interactions

- DNA methylation (epigenome)
- Histone modifications (epigenome)
- DNA binding proteins (e.g., transcription factor)

RNA

- mRNA (transcriptome)
- Other species
 - miRNA, IncRNA 16s rRNA (microbiome)
- RNA binding proteins (e.g., splicing factors)
- Methylation RNA (epitranscriptome)
- Single-cell



Center for Innovative Design & Analysis colorado school of public health

Proteins

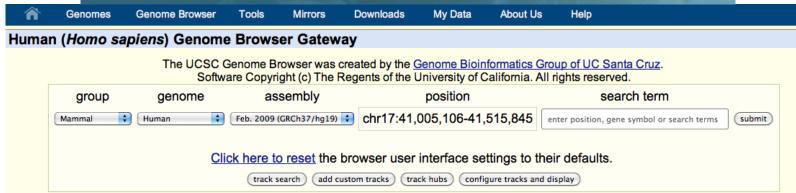
- Abundance
- Structure
- Protein-protein interactions
- Post-translation modifications (e.g., phosphoproteomics, glycoproteomics)

Metabolites

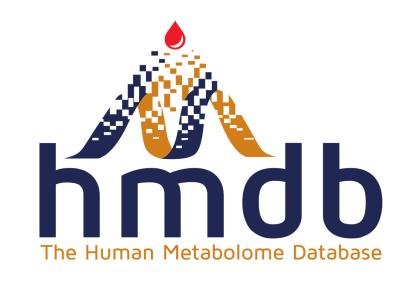
- Types of small molecules
 - Lipids lipidomics
 - Exogenous factors— exposome
 - Diet/drugs nutrigenomics
- Toxicology (changes due to chemical)
- Metabolic reactions (e.g., fluxomics)
- Nuclear magnetic resonance (NMR) (metabonomics)

Large-scale Projects & Databases

NCI 60 Database



Large-scale Projects & Databases



translating the code of life

Center for Innovative Design & Analysis

Multiple-Cohorts & Populations

Home » Research & Training

ENVIRONMENTAL INFLUENCES ON CHILD HEALTH OUTCOMES (ECHO)
PROGRAM

Resources @ AMC

Home > Research > Shared Resources > Genomics

Home

Services

Facility and Platforms

Data Analysis

Quote Request

Sample Submissions and Forms

Contact Us

Address:

Location/Fed Ex

Genomics and Microarray Core

Anschutz Medical Campus

RC-2, Room 9400

12700 E. 19th Ave.

Aurora, CO 80045

Fax: 303-724-6046

Genomics Shared Resource Home Page

The Genomics and Microarray Shared Resource at University Of Colorado Denver Cancer Center is an advanced, state-of-the-art DNA and Protein microarray and Next Generation (NextGen) DNA sequencing technology center providing crucial research support for investigators interested in using:

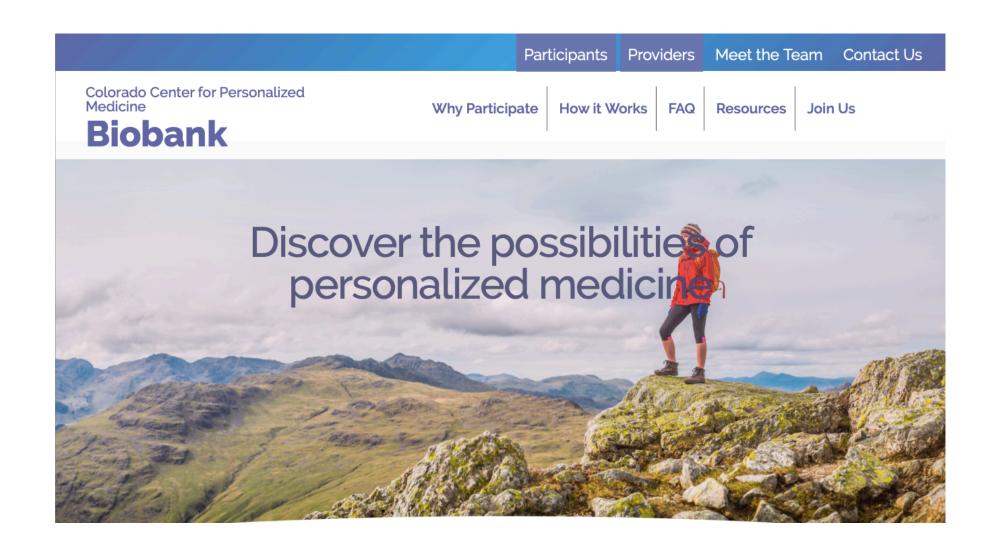
Next Generation Sequencing:

- Illumina HiSeq 2500/4000 sequencing
- · Illumina MiSeq sequencing
- · LifeTech IonPGM sequencing

DNA Microarray:

- Illumina BeadArrays
- Agilent Microarrays

University of Colorado School of Medicine Biological Mass Spectrometry Facility



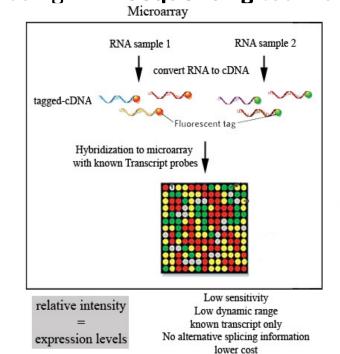
Part 2: What questions can you answer with omics data?

Harry Smith

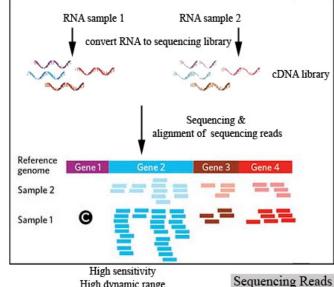
 Question: Are gene/transcripts expressed at different levels between two experimental groups?

• Solution 1: Differential Expression analysis using RNA-Sequencing technologies and

DESeq2.



https://www.otogenetics.com/rna-sequencing-vs-microarray/



expression levels

RNA Sequencing (RNA-Seq)

Center for Innovative Design & Analysis

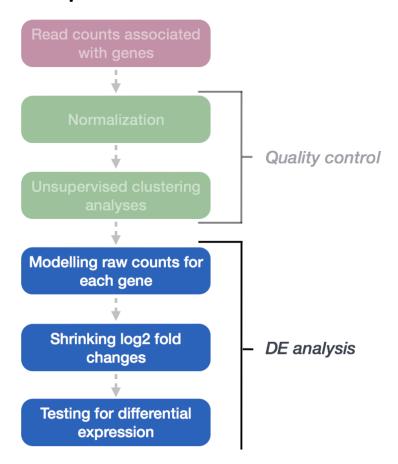
High dynamic range

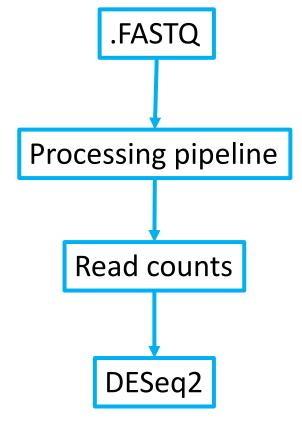
Novel transcripts sequences identified

structural variation & alternative splicing revealed

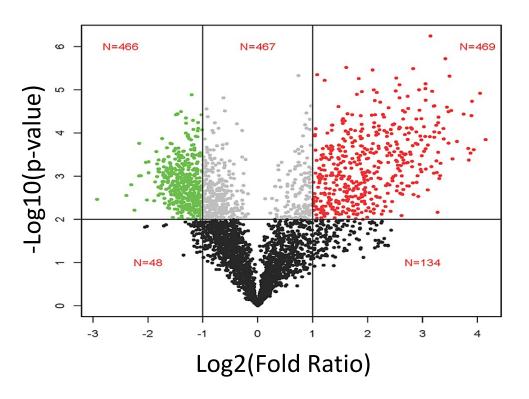
unlimited sample comparisons

Example

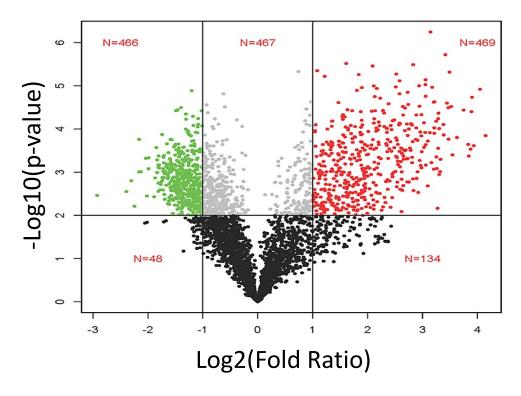




Center for Innovative Design & Analysis

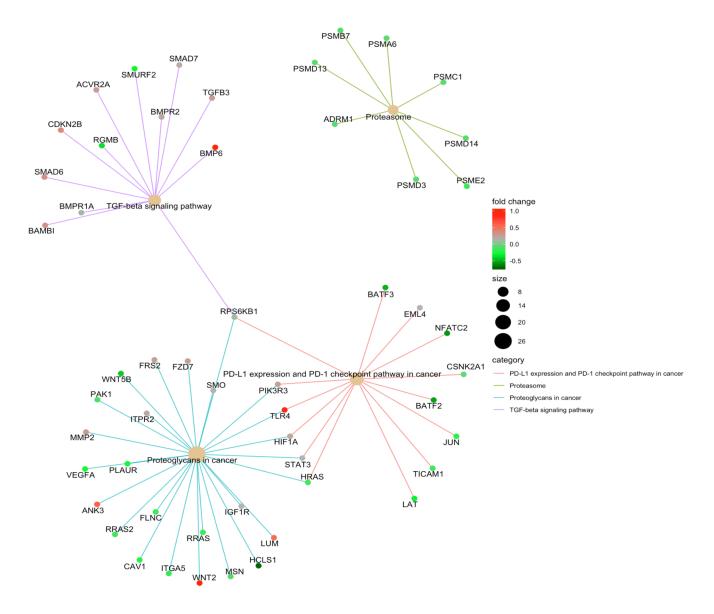


Identify differentially expressed genes



Identify differentially expressed genes

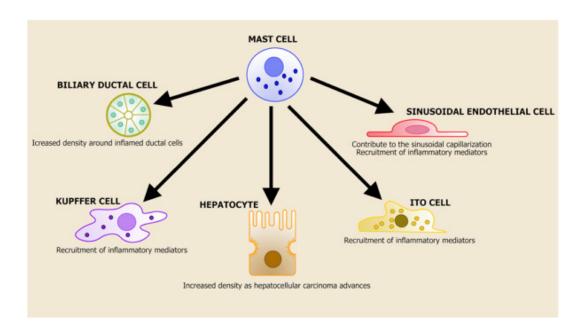
Identify enriched biological pathways based on DE genes



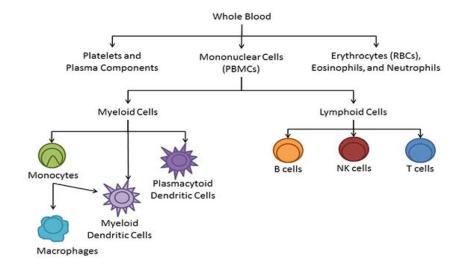
Center for Innovative Design & Analysis

- Question: Can omics be used to reveal complex and rare cell populations, uncover regulatory relationships between genes, and track the trajectories of distinct cell lineages in development?
- **Solution:** Identify complex and rare cell populations and uncover regulatory relationships between genes using single-cell RNA-Sequencing technologies.

Tissue: Liver

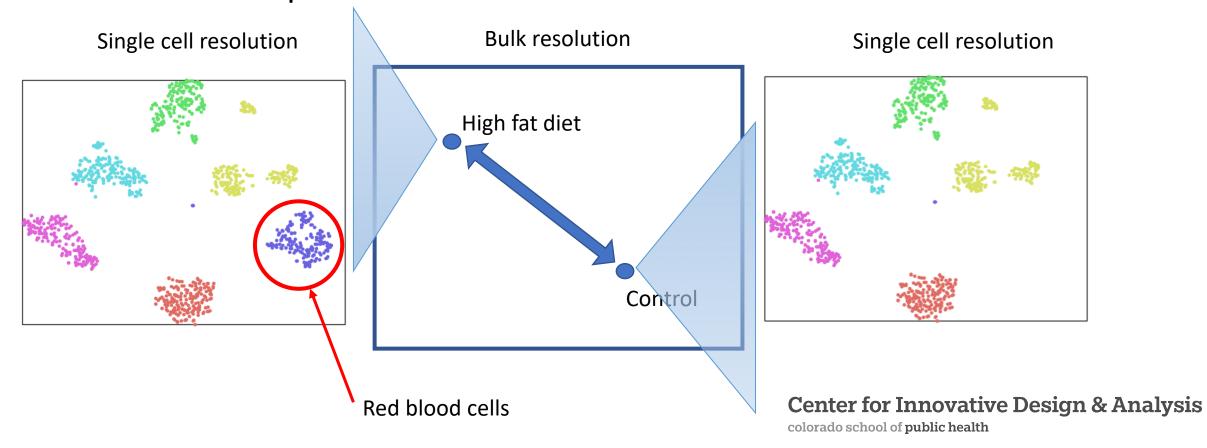


Tissue: Blood



Center for Innovative Design & Analysis

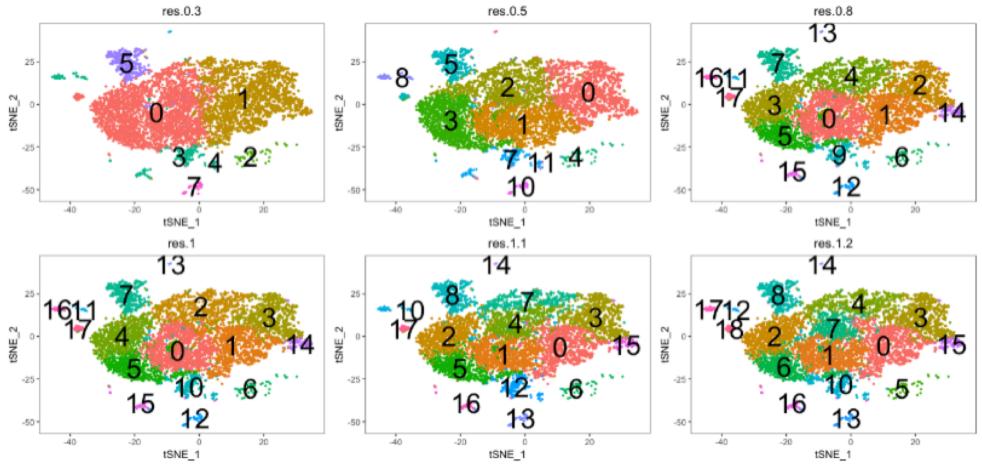
 With single cell resolution you can get one profile for each individual cell in the sample



Question 2: Experimental background

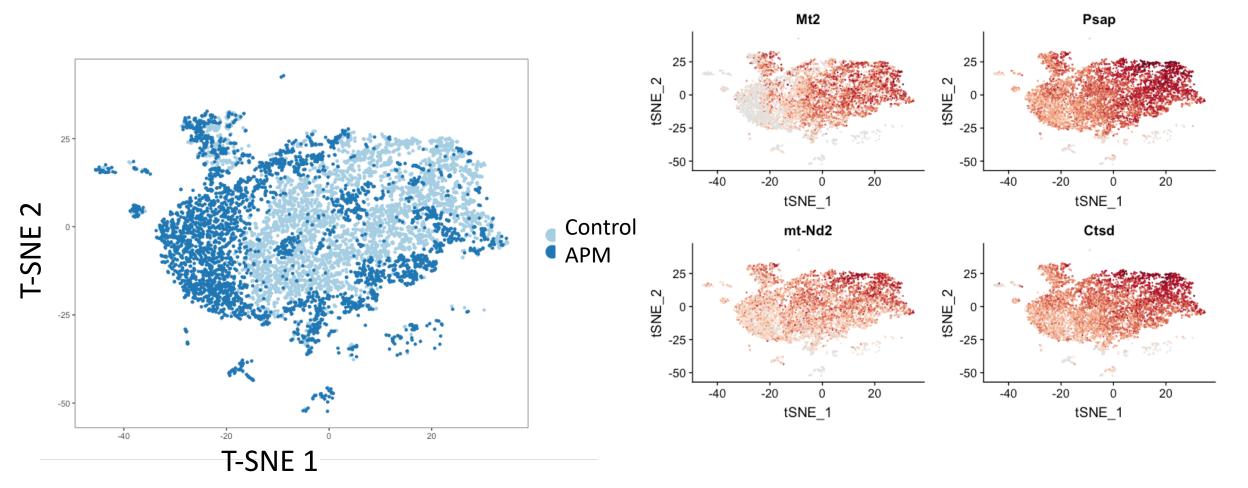
- Researchers were interested in how the transcriptomic profile of lung tissue was affected by an exposure at the single-cell level.
- Bronchoalveolar lavage cells
- Mouse model
- Two groups
 - Control
 - Exposed
- One time point

Question 2: Cluster identification

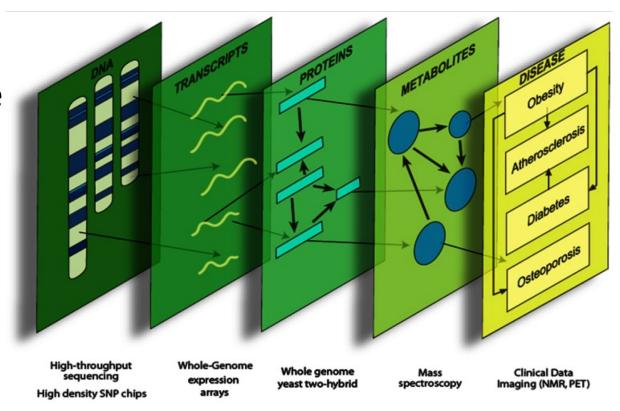


Center for Innovative Design & Analysis colorado school of public health

Question 2: Sample specific expression



- Question: I have multiple omics datasets. Is there a way for me to integrate these data and generate meaningful results?
- Solution 1: You can use the smCCnet package (Shi. W et al., https://academic.oup.com/bioinf ormatics/article/35/21/4336/543 0928)
- Solution 2: Or you can use a Systems Genetics Approach

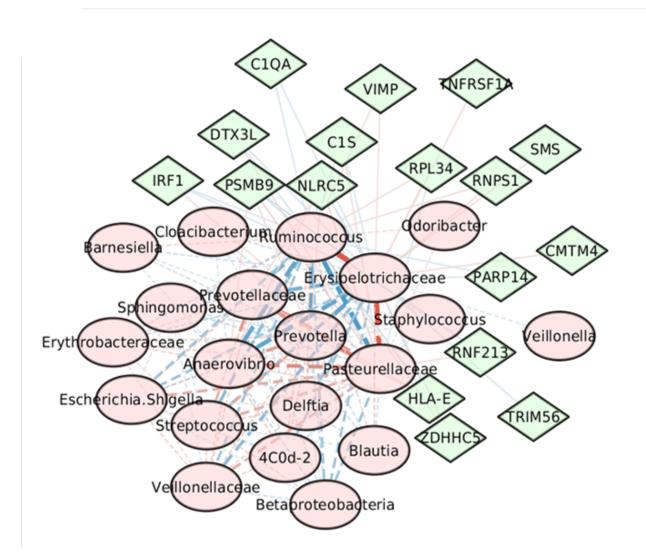


https://www.researchgate.net/figure/Systemsgenetics-analysis-Systems-genetics-integratesgenetic-variation-intermediate_fig1_237014601

Center for Innovative Design & Analysis

smCCnet

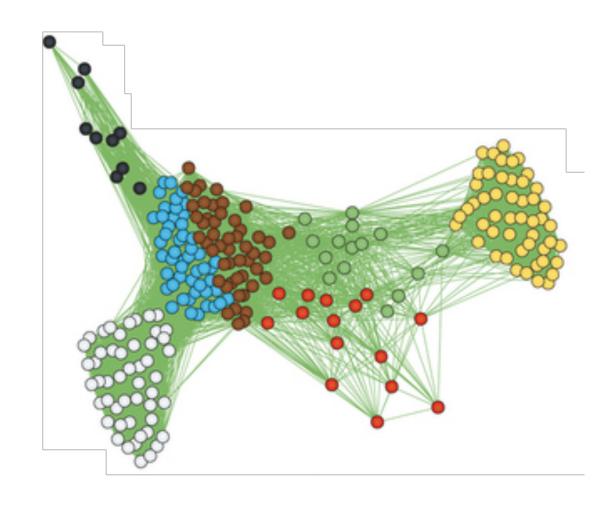
- Phenotype: sCD14 serum levels
- Omics data set 1: RNA-Seq
- Omics data set 2: Microbiome



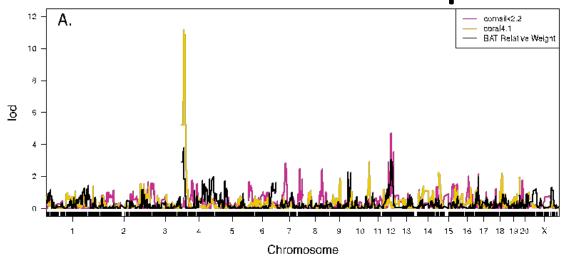
Question 3: Example

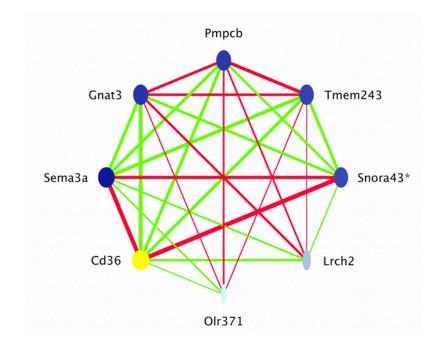
Terminology

- Quantitative trait loci (QTL)
- Weighted gene co-expression network analysis (WGCNA)
- Network (think large scale)
- Co-expression module (think small scale)
- Eigengene



Question 3: Example





	Number	Proportion of Variation					
Co-	of Genes	Explained by					
expression	in	Module	Associated		Correlation		
Module	Module	Eigengene	Phenotype	Phenotypic QTL*	Coefficient	P-value	Module Eigengene QTL*
			BAT relative	Chr 12: 28.1 Mb (13.2-			
Cornsilk2.2	5	0.71	weight	38.5)	0.42	0.020	Chr 12: 27.3 Mb (26.4-40.5)
			BAT relative				
Coral4.1	8	0.65	weight	Chr 4: 13.3 Mb (0.6-14.7)	-0.43	0.018	Chr 4: 14.5 Mb (13.7-21.8)
			Glucose				
Darkseagree			incorporation	Chr 2: 200.0 Mb (167.6-			
n	16	0.54	into BAT lipids	224.1)	0.56	0.001	Chr 2: 205.3 Mb (200.5-207.7)

Center for Innovative Design & Analysis

Part 3: Common Themes Across Omics Types

Lauren Vanderlinden

Common Themes Among All Omics Datasets

- 1. Data Storage
- 2. Processing Data
 - Normalization
 - QC plots
- 3. Multiple Testing Comparisons
- 4. Enrichment Analysis
- 5. Validation
- 6. Questions to keep in mind

Data Storage

- Depends on core/company generating the data
- Raw data backup
- Software can now perform on a compressed file (e.g. fastq.tar.gz)
- Allow 3-4x the amount of the raw data as empty space computing
- Plan for where analysis will be conducted:
 - Local Server
 - Cloud computing
 - Galaxy

RNA-Seq Fastq

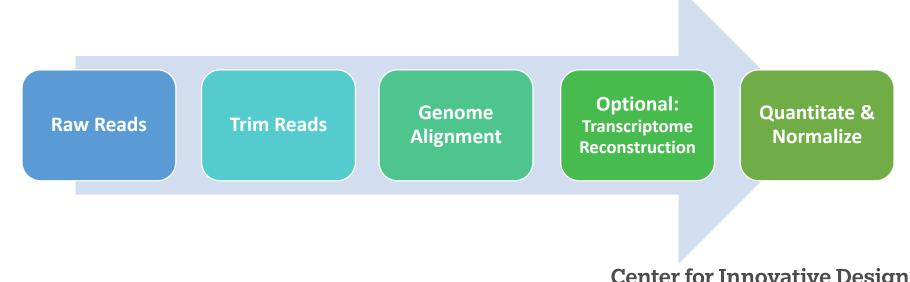
Size = # reads * (100 + 2*readLength)
Example: 100 million reads with a
read length of 150 = 40G

Methylation Array Idat

450K ~ 7MB EPIC ~ 11MB 2 files per sample

Processing Data

- Much more processing time than traditional data
- Raw data is provided as 1 (or 2) files/sample and not a pretty matrix
- Example of RNA-Seq pre-processing steps:



Normalization

Process of removing (or minimizing) non-biological variation

- RNA-Seq
 - Reads/Fragments Per Kilobase per Million (RPKM/FPKM)
 - Transcripts per Million (TPM)
 - Quantile
 - Weighted Trimmed Mean of Log Expression Ratios (M values) (TMM)
 - DESeq Median of Ratios (geometric mean & scaling factor)
 - Removal of Unwanted Variation (RUV)
 - Surrogate Variable Analysis (SVA)

- Metabolomics (MS):
 - Locally estimated scatterplot smoothing (LOESS)
 - Systematic Error Removal using Random Forest (SERRF)
 - Median
 - Quantile
 - Cross-Contribution Compensating
 Multiple Standard Normalization
 (CRMN)
 - SVA
 - RUV
 - R/MSprep evaluates best method for metabolomics MS data

- Methylation Arrays:
 - subset-quantile within array normalization (SWAN)
 - normal-exponential using outof-band probes (Noob)
 - single-sample Noob (ssNoob)
 - Functional normalization (Funnorm)
- Microarrays:
 - Robust Multichip Average (RMA)
 - Guide to Probe Logarithmic Intensity Error (PLIER)

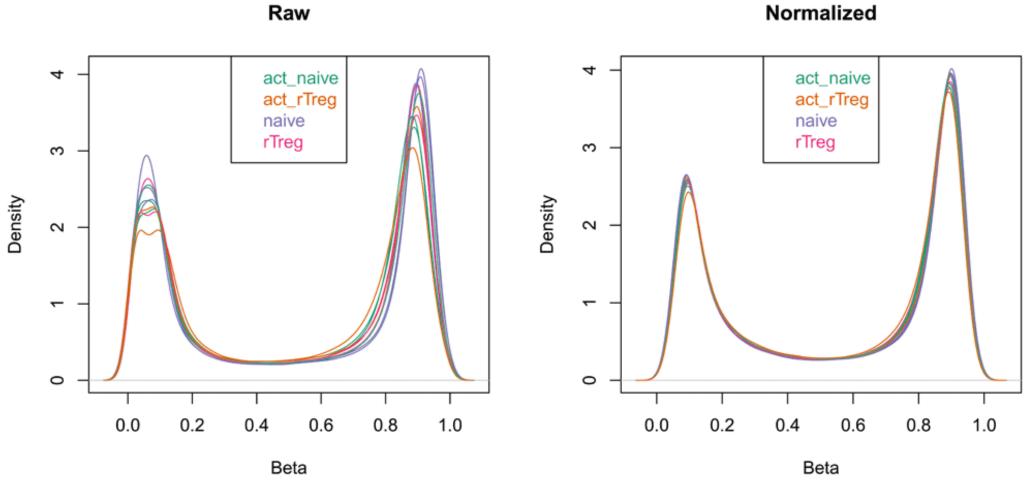
R/Normalyzer:

A Tool for Rapid Evaluation of Normalization Methods for Omics Data Sets

No Standard Method!

Center for Innovative Design & Analysis

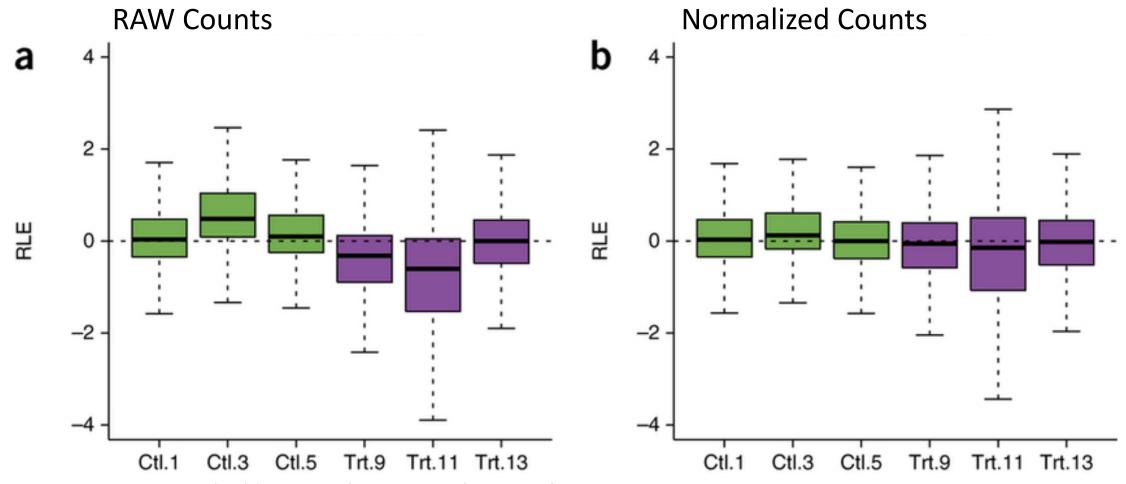
QC Density Plots – Methylation Array Example



Maksimovic J, Phipson B and Oshlack A. A cross-package Bioconductor workflow for analysing methylation array data [version 3]. F1000Research 2017, 5:1281 (doi: 10.12688/f1000research.8839.3)

Center for Innovative Design & Analysis colorado school of public health

QC RLE Plots: Relative Log Expression



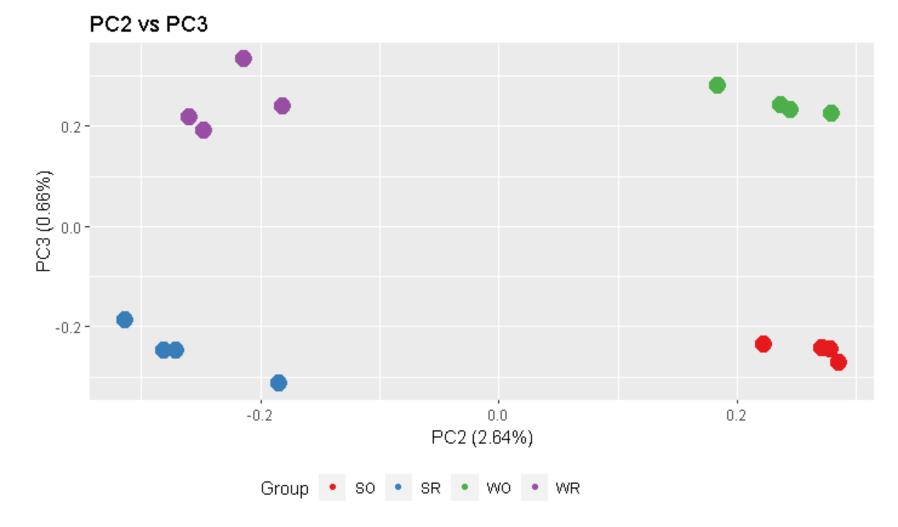
Risso D, Ngai J, Speed T, Dudoit S (2014). "Normalization of RNA-seq data using factor analysis of control genes or samples." *Nature Biotechnology*, **32**(9), 896–902.

QC PCA Plots

Clustering by different factors:

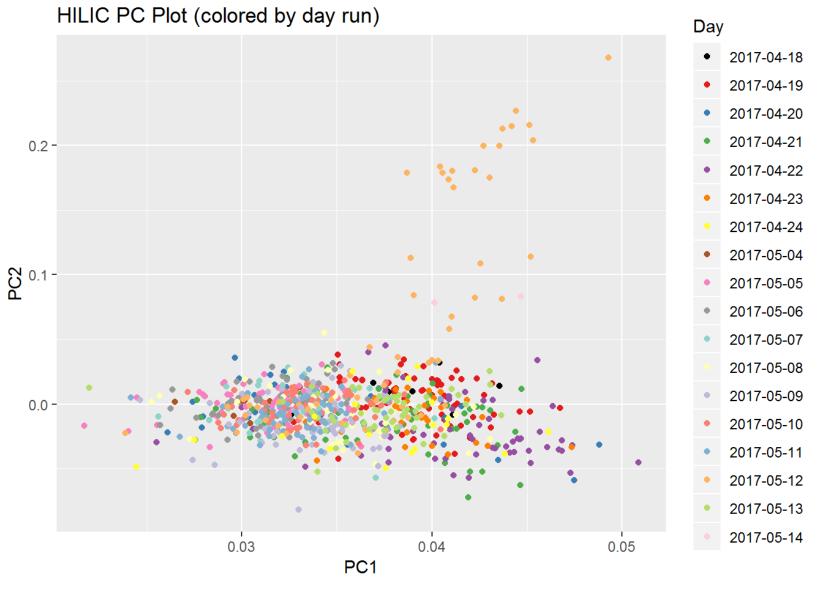
X-axis separating by tissue

Y-axis separating by strain



Batch Effects

Samples colored by batch (date run)

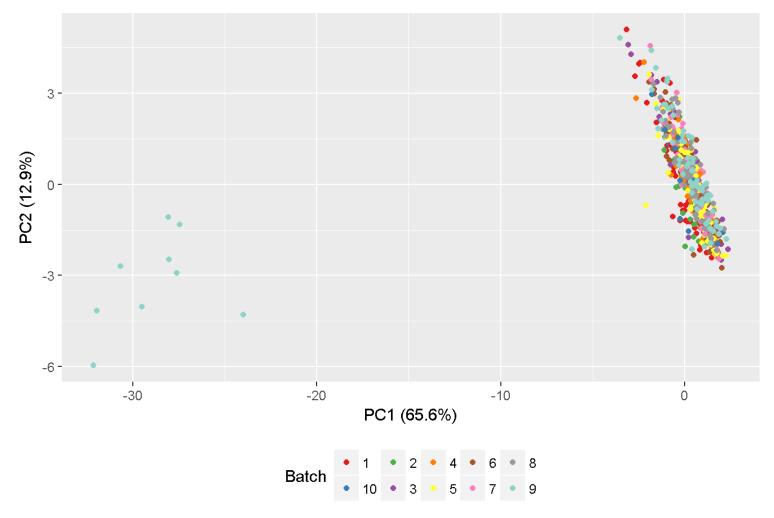


Center for Innovative Design & Analysis

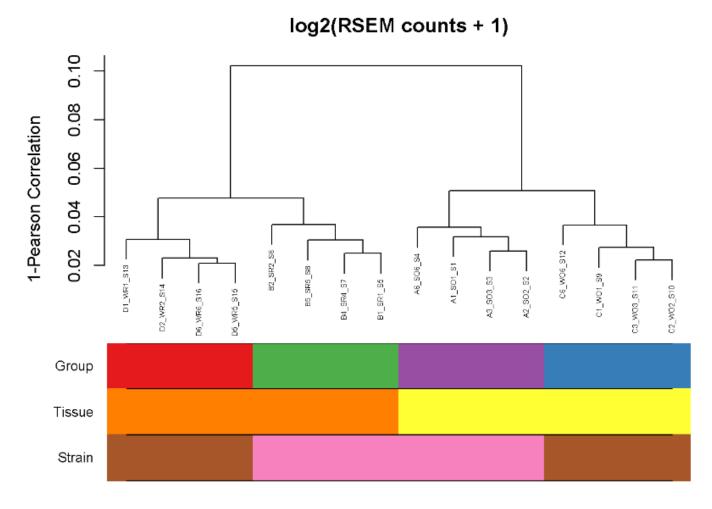
colorado school of public health

Sample Level QC

Can help identify poor quality samples

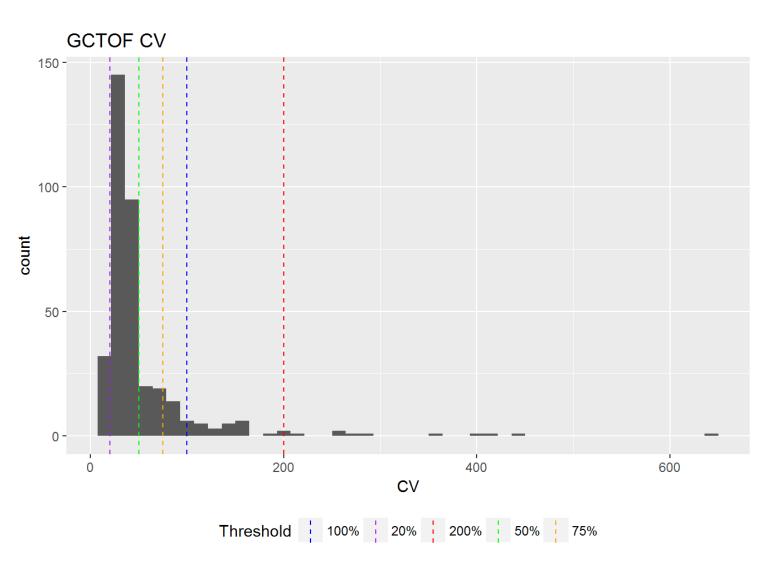


QC Dendrograms



Feature Level QC

- Detection above background threshold
- Coefficient of variation (CV) threshold



Center for Innovative Design & Analysis

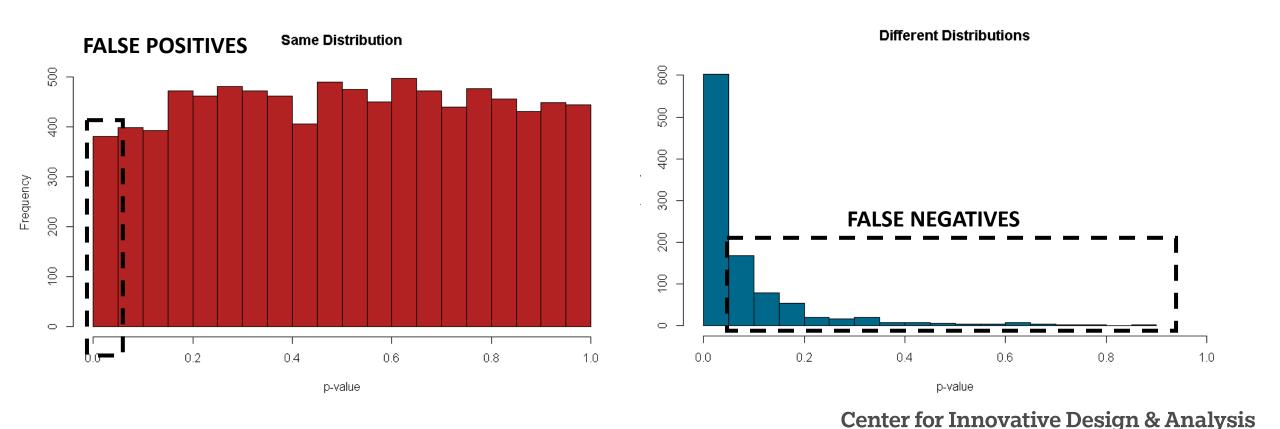
colorado school of public health

Multiple Testing

- Same statistical model on every feature
 - Example: 20,000 genes, then you have 20,000 tests
 - If you leave alpha = 0.05 you would expect 1,000 false positive results (Yikes!)
- Perform correction for multiple testing
- All methods are assuming all tests are independent
- Bonferroni
 - Multiple the p-value by the # of tests performed
 - Most conservative and considered too harsh

False Discovery Rate (FDR)

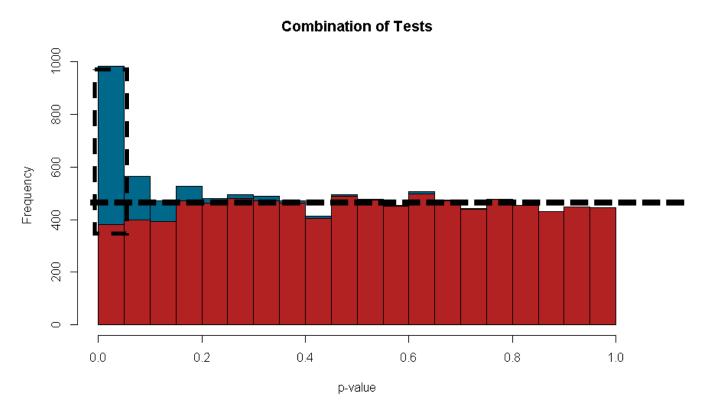
Adjusts each p-value differently depending on rank



colorado school of public health

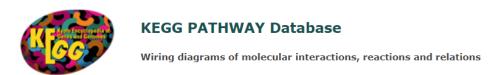
False Discovery Rate (FDR)

 Tries to estimate your distribution of non-significant p-values (makes power analyses difficult)



Enrichment & Over-representation Analysis

- Big picture of system level
- Static (Over-representation)
- Fluid (Enrichment)
 - Gene Set Enrichment Analysis (GSEA)



	Candidates	Genome (background)
In Pathway		
Not in Pathway		

Background Set is Important

- What is present in study sample type
 - Example: if looking at lung tissue you would not expect all genes to be expressed in the lung regardless of study design
- Arrays certain genes are over-represented
 - Various number of probes/gene
 - Example: Illumina's EPIC array there is a range of 1 to 1,487 probes/gene, with a median of 20 probes per gene
 - R/missMethyl takes into account how many probes are designed on array

	Candidates	Genome (background)
In Pathway		
Not in Pathway		

Validation

- Reproduce quantitation:
 - High-throughput methods are not the gold standard in quantitation
 - Gene expression: qRT-PCR
 - Methylation: Pyrosequencing
 - Metabolomics: Targeted or internal standard
- Functional validation:
 - Gene knock-down or knock-out methods
 - Use different dataset (publically available) show this effect
- Multi Omics Integration:
 - Gene candidate in both ChIP-Seq and RNA-Seq
 - Correlation among methylation and gene expression

Know Your Biology Question Prior to Conducting Omics Experiment: RNA-Seq example

- Do you want bulk or cell-specific level?
 - Single cell sequencing vs bulk sequencing
- What type(s) of RNA do you want to look at?
 - mRNA only (polyA selection or possibly Tag-Seq)
 - Long non-coding and other longer types (total RNA)
 - miRNA and other smaller RNAs (small RNA processing different than the others and these need to be measured on separate sequencing runs)
 - Rare RNA types like fusion genes? (longer paired-end reads)
- What level are you looking on quantitating your data on?
 - Gene level only
 - Isoform specific level
 - Reconstruct your own transcriptome (need deep sequencing)

Known Your Analysis Type Prior To Conducting Omics Experiment

- Simple differential expression at a gene-centric level
 - Easiest processing
- More complex models
 - More processing time
- Data driven network analysis
 - Need a higher sample size
 - WGCNA suggests at a MINIMUM 20 samples
- Machine learning
 - Needs the highest sample size (hundreds)

Discussion: Starting your study

- 1. Talk to core to plan experiment & discuss
 - Technology
 - Protocol options
 - Timeline
 - Sample handling and prep
- 2. Plan for computing needs (software, hardware) & data storage

Discussion: Starting your study

- 3. Work with biostatistician/bioinformatician especially if
 - More complex study design (e.g., multiple time points, biological/treatment groups)
 - More complex analyses (e.g., alternative splicing, transcriptome reconstruction, gene fusion)
- 4. Budget time and effort for data analysis (biggest bottleneck)

Discussion