Big Data Seminar Series: OMICS Data

January 20, 2021

Katerina Kechris & Lauren Vanderlinden

Departments of Biostatistics & Informatics and Epidemiology

Colorado School of Public Health

Center for Innovative Design & Analysis

colorado school of public health

Outline

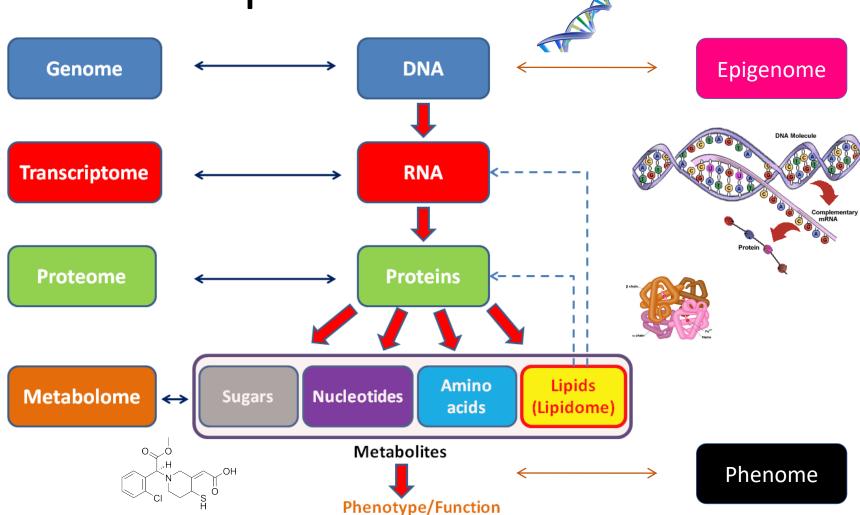
1. Current omics technologies (Kechris)

2. Examples of analyses (Kechris)

- 3. Common statistical themes in omics data analysis (Vanderlinden)
- 4. Questions and discussion to plan your omics study

Part 1: Technologies

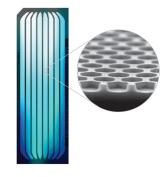
Omics Landscape



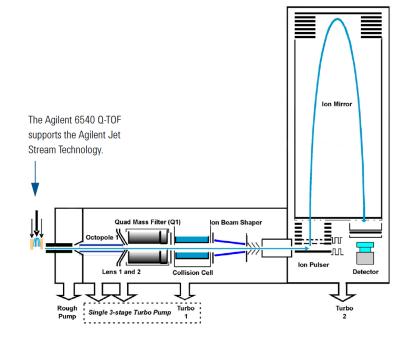
Technologies

1. Microarrays (RNA/DNA)

2. Sequencing (RNA/DNA)

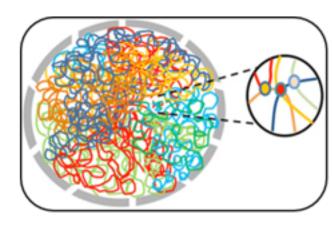


3. Mass-spectrometry (proteins/metabolites)



DNA

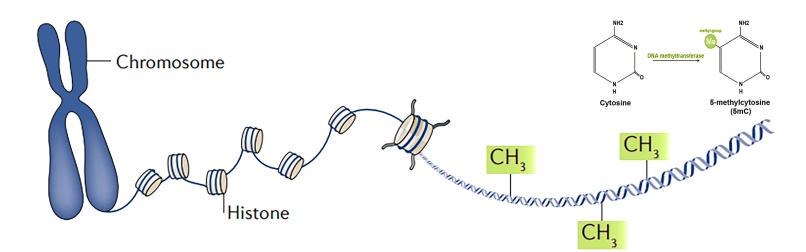
- Genome (whole genome sequencing, WGS)
 - Within and across population
 - Across species
- Exome
- Single nucleotide polymorphisms (SNPs)
- Chromosome conformations (3C/Hi-C)



https://www.creativebiomart.net/

DNA Modifications & Interactions

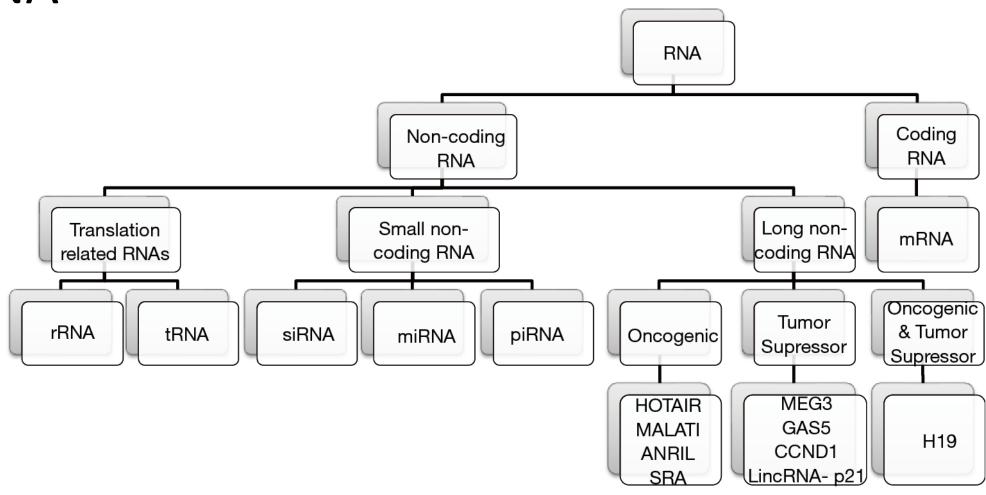
- DNA methylation (epigenome) (methyl-Seq)
- Histone modifications (epigenome) (ChIP-Seq)
- DNA binding proteins (e.g., transcription factor)
- Chromosome accessibility (ATAC-Seq)



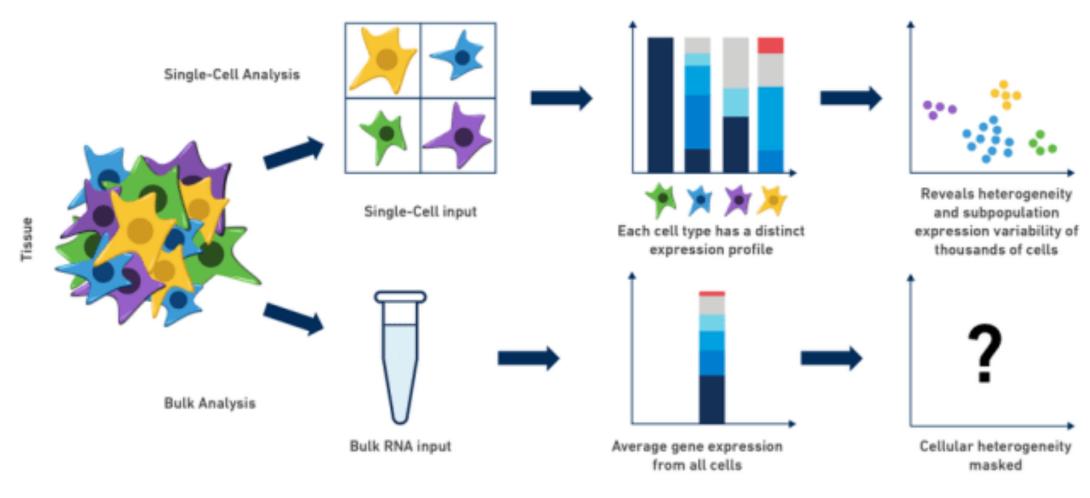
RNA

- mRNA (transcriptome) (RNA-Seq)
- RNA binding proteins (e.g., splicing factors) (CLIP-Seq)
- Methylation RNA (epitranscriptome) (MeRIP-Seq)
- Other types
 - miRNA, IncRNA, etc
 - 16s rRNA (microbiome)

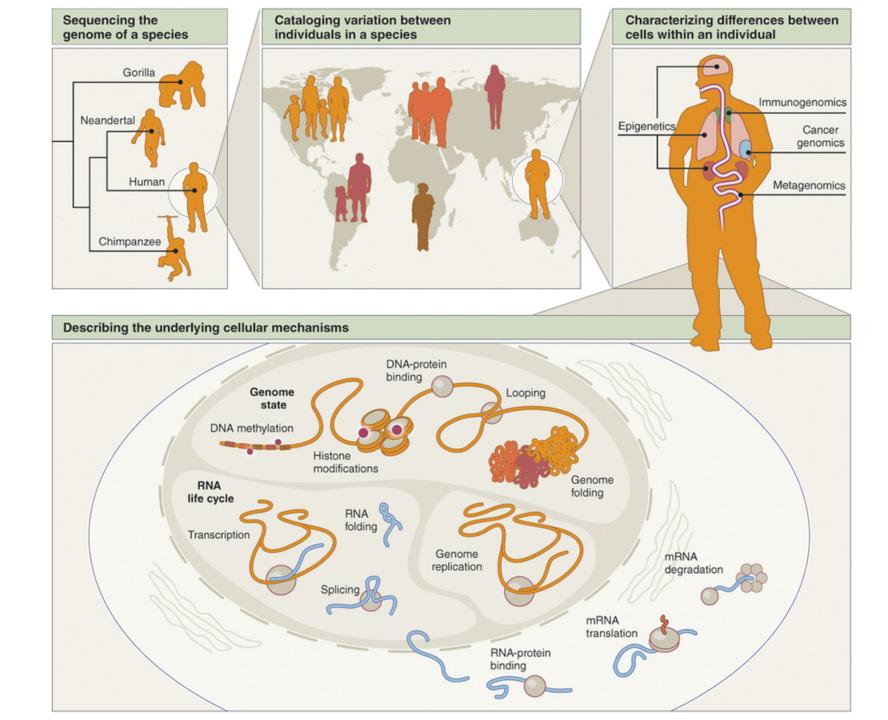
RNA



Single-cell vs Bulk Cell



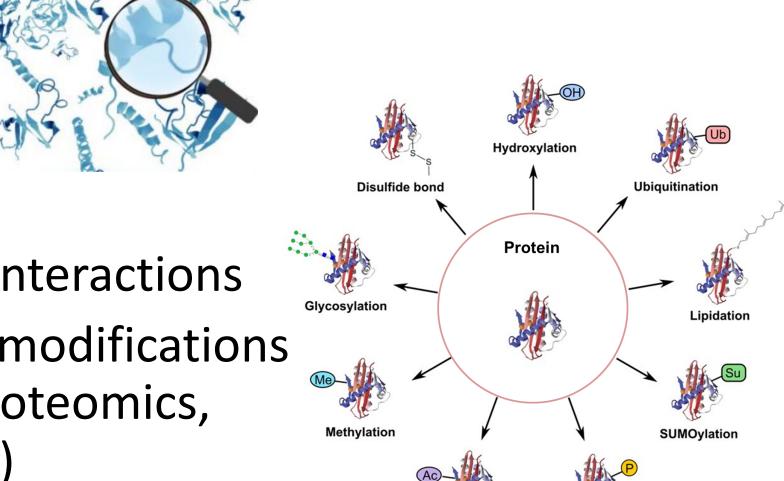
https://www.10xgenomics.com/



Shendure & Aiden Nature Biotechnology 30, 1084–1094 (2012)

Proteins

- Abundance
- Structure
- Protein-protein interactions
- Post-translation modifications (e.g., phosphoproteomics, glycoproteomics)

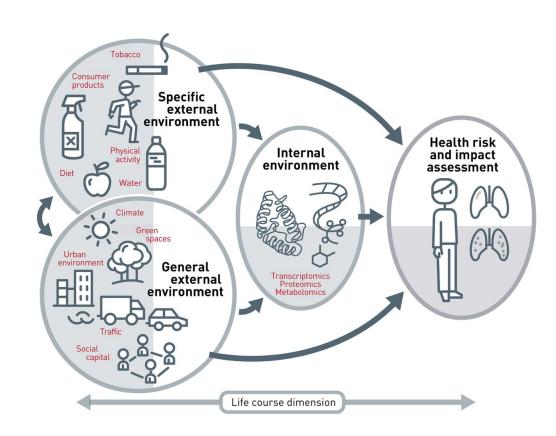


Acetylation

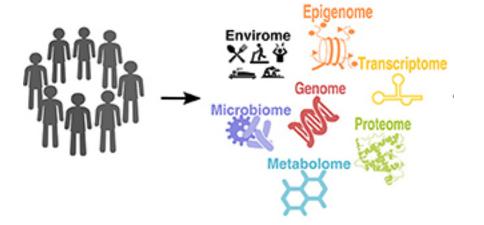
Phosphorylation

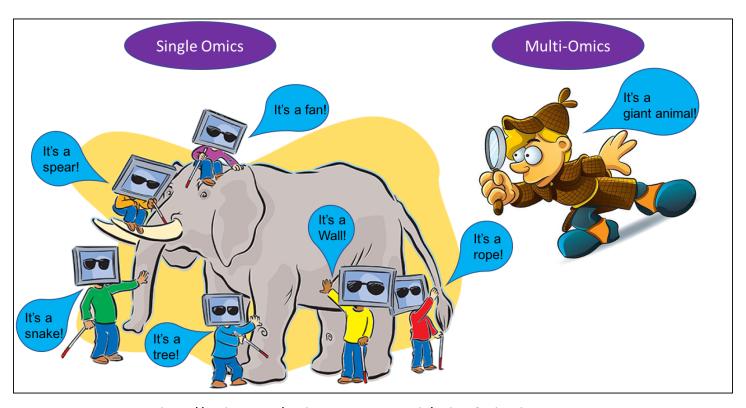
Metabolites

- Types of small molecules
 - Lipids lipidomics
 - Exogenous factors— exposome
 - Diet/drugs nutrigenomics
- Toxicology (changes due to chemical)
- Metabolic reactions (e.g., fluxomics)



Multi-Omics

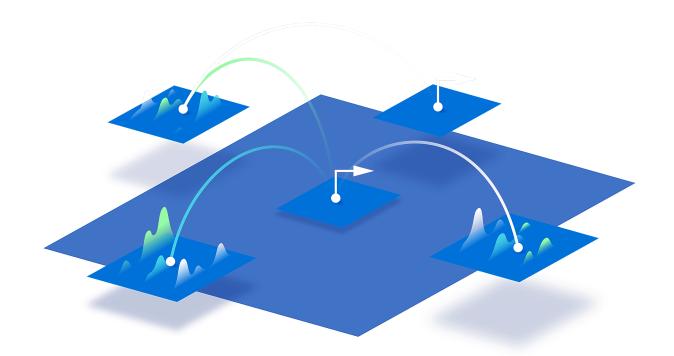




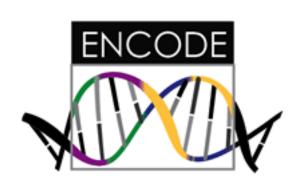
http://melgen.org/multi-omics-approach/ Vilne & Shunkert 2018

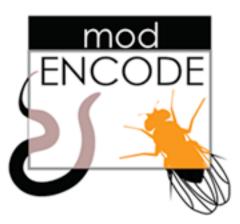
Multi-Omics

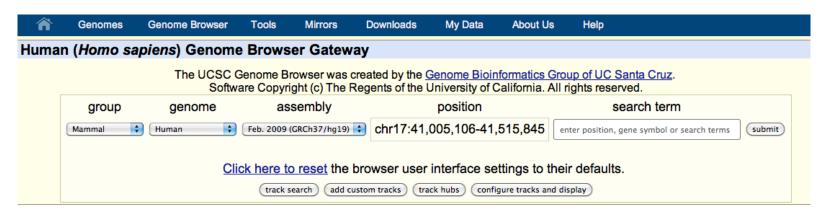
From same cell, simultaneous detection of mRNA & chromatin accessibility (e.g., Multiome 10X Genomics)



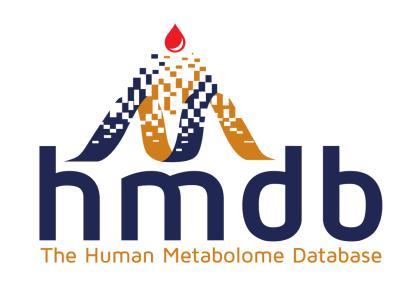
Large-scale Projects & Databases







Large-scale Projects & Databases



translating the code of life

Multiple-Cohorts & Populations



COnsortium of METabolomics Studies

Home » Research & Training

ENVIRONMENTAL INFLUENCES ON CHILD HEALTH OUTCOMES (ECHO) PROGRAM

Resources @ AMC

Home > Research > Shared Resources > Genomics

Home

Services

Facility and Platforms

Data Analysis

Quote Request

Sample Submissions and Forms

Contact Us

Address:

Location/Fed Ex

Genomics and Microarray Core

Anschutz Medical Campus

RC-2, Room 9400

12700 E. 19th Ave.

Aurora, CO 80045

Fax: 303-724-6046

Genomics Shared Resource Home Page

The Genomics and Microarray Shared Resource at University Of Colorado Denver Cancer Center is an advanced, state-of-the-art DNA and Protein microarray and Next Generation (NextGen) DNA sequencing technology center providing crucial research support for investigators interested in using:

- Next Generation Sequencing:
- Illumina HiSeq 2500/4000 sequencing
- Illumina MiSeq sequencing
- LifeTech IonPGM sequencing
- DNA Microarray:
- Illumina BeadArrays
- Agilent Microarrays

University of Colorado School of Medicine Biological Mass Spectrometry Facility Participants Providers Meet the Team Contact Us

Colorado Center for Personalized Medicine

Why Participate

How it Works

Resources

FAQ

Join Us

Biobank

Part 2: Examples

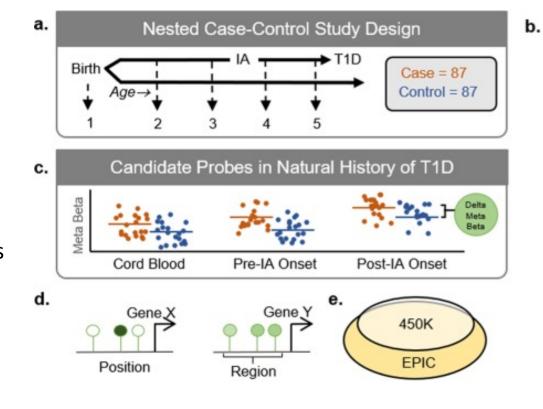
Study 1: Epigenetics & Type 1 Diabetes (T1D)

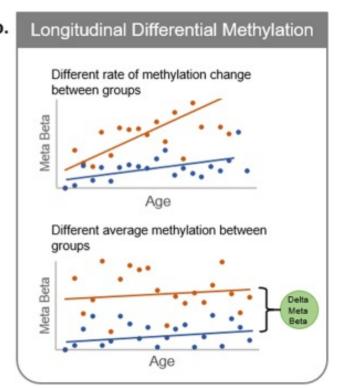
with Jill Norris (Epi, CSPH)

- DNA methylation link between genetic susceptibility & environmental exposure in T1D
- Most studies on individuals already diagnosed with T1D
- Goal: Study pre-disease DNA methylation changes associated with later development of T1D

Study Design: DNA methylation measured prior to onset of clinical T1D from Diabetes Autoimmunity Study in the Young (DAISY) cohort (n=174)

Platform: Illumina BeadChip Array **Analysis:** longitudinal mixed model, meta-analysis, region-based analysis





Johnson et al., (2020) Longitudinal DNA methylation differences precede type 1 diabetes *Scientific Reports*

Study 2: Protein-Metabolite Networks in Chronic Obstructive Pulmonary Disease (COPD) with Russ Bowler (NJH)

- Most biomarker studies focus on single molecules, but panels have shown to improve prediction
- Examine proteins & metabolites to find phenotype specific networks as candidate biomarkers

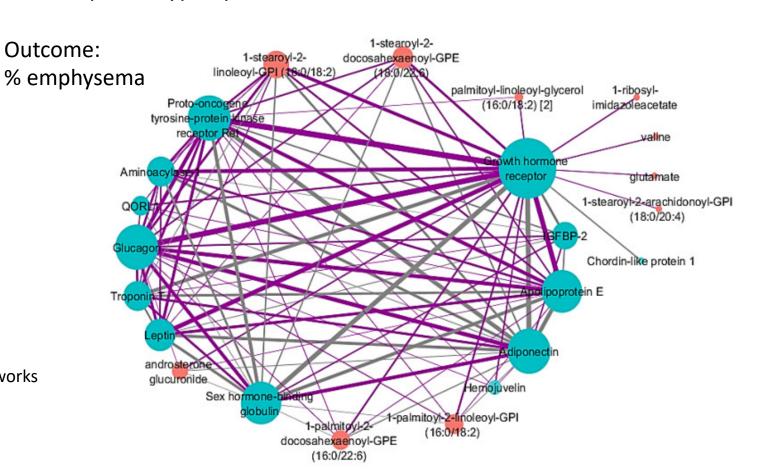
Study Design: proteins and metabolites measured in blood on COPDGene cohort subjects (n=1008)

Platform: Metabolon, SOMAScan

Analysis: sparse canonical correlation

analysis, adjusting cell counts

Mastej et al., (2020) Identifying Protein-metabolite Networks Associated with COPD Phenotypes. *Metabolites*



Study 3: Role of miRNA in Alcohol Related Behaviors

with Laura Saba, Boris Tabkaoff (SSPPS), Paula Hoffman (SOM)

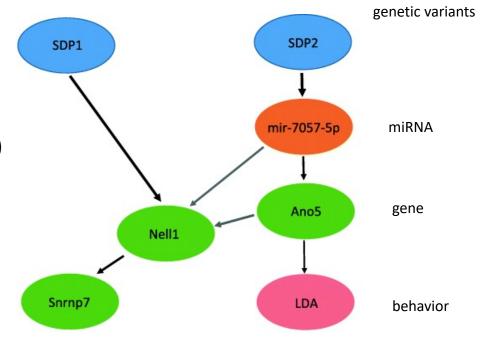
- Increasing role of miRNA in alcohol related behaviors
- Role of miRNAs as mediators of the genetic effect on behaviors is not fully understand

Study Design: expression measured in brain of recombinant inbred panel in mice; genotypes, behavioral phenotypes, and gene expression in brain available in panel

Platform: small RNA sequencing

Methods: Bayesian Network Analysis

Rudra et al., (2018) Predictive modeling of miRNA-mediated predisposition to alcohol-related phenotypes in mouse. BMC Genomics Low Dose Activation (measure of sensitivity to low dose of ethanol)



Part 3: Common Themes

Common Themes Among All Omics Projects

- 1. Study Design and Planning
- 2. Data Storage
- 3. Processing Data
 - Normalization
 - QC plots
- 4. Multiple Testing Comparisons
- 5. Enrichment Analysis
- 6. Validation
- 7. Discussion

1. Study Designs

- Simple 2-group comparisons
 - E.g. differential expression/abundance
 - Easiest processing, many investigators can do by themselves
- More complex models
 - More processing time
- Data driven network analysis
 - Need a higher sample size
 - WGCNA suggests at a MINIMUM 20 samples
- Machine learning
 - Needs the highest sample size (hundreds)
- Talk to CIDA for designs outside of a simple 2-group comparison

Data Collection Questions: RNA-Seq example

- Communicate with the core/company collecting data is key to figure out best technology for your needs
- Do you want bulk or cell-specific level?
 - Single cell vs bulk
- What type(s) of RNA do you want to look at?
 - mRNA only (polyA selection or possibly Tag-Seq)
 - Long non-coding and other longer types (total RNA)
 - miRNA and other smaller RNAs
 - Rare RNA types like fusion genes? (longer paired-end reads)
- What level are you looking on quantitating your data on?
 - Gene level only
 - Isoform specific level
 - Reconstruct your own transcriptome (need deep sequencing)

2. Data Storage

- Depends on core/company generating the data
- Raw data backup
- Software can now perform on a compressed file (e.g. fastq.tar.gz)
- Allow 3-4x the amount of the raw data as empty space computing
- Plan for where analysis will be conducted:
 - Local Server
 - Cloud computing
 - Galaxy
- Long term storage

RNA-Seq Fastq

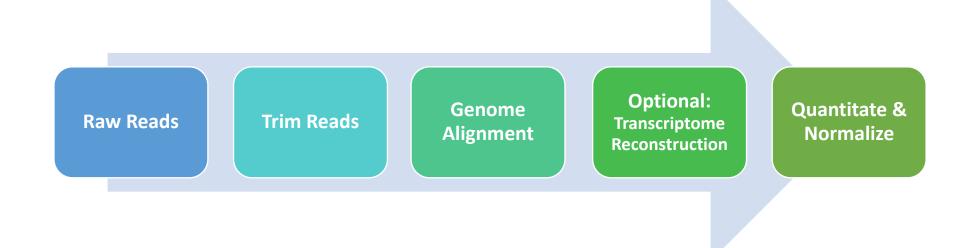
Size = # reads * (100 + 2*readLength)
Example: 100 million reads with a
read length of 150 = 40G

Methylation Array Idat

450K ~ 7MB EPIC ~ 11MB 2 files per sample

3. Processing Data

- Much more processing time than traditional data
- Raw data is provided as 1 (or 2) files/sample and not a pretty matrix
- Example of RNA-Seq pre-processing steps:



Normalization

Process of removing (or minimizing) non-biological variation

- RNA-Seq
 - Reads/Fragments Per Kilobase per Million (RPKM/FPKM)
 - Transcripts per Million (TPM)
 - Quantile
 - Weighted Trimmed Mean of Log Expression Ratios (M values) (TMM)
 - DESeq Median of Ratios (geometric mean & scaling factor)
 - Removal of Unwanted Variation (RUV)
 - Surrogate Variable Analysis (SVA)

- Metabolomics (MS):
 - Locally estimated scatterplot smoothing (LOESS)
 - Systematic Error Removal using Random Forest (SERRF)
 - Median
 - Quantile
 - Cross-Contribution Compensating
 ^o
 Multiple Standard Normalization
 (CRMN)
 - SVA
 - RUV
 - R/MSprep evaluates best method for metabolomics MS data

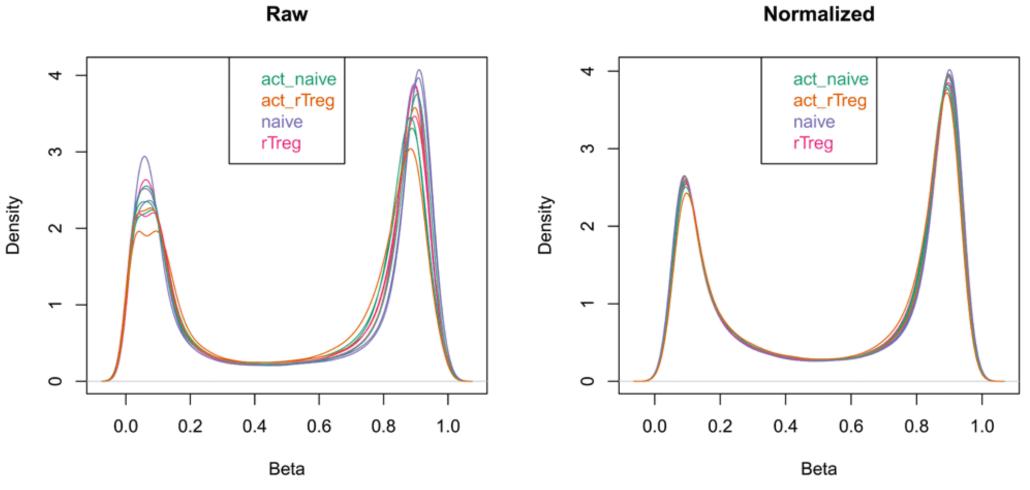
- Methylation Arrays:
 - subset-quantile within array normalization (SWAN)
 - normal-exponential using outof-band probes (Noob)
 - single-sample Noob (ssNoob)
 - Functional normalization (Funnorm)
- Microarrays:
 - Robust Multichip Average (RMA)
 - Guide to Probe Logarithmic Intensity Error (PLIER)

R/Normalyzer:

A Tool for Rapid Evaluation of Normalization Methods for Omics Data Sets

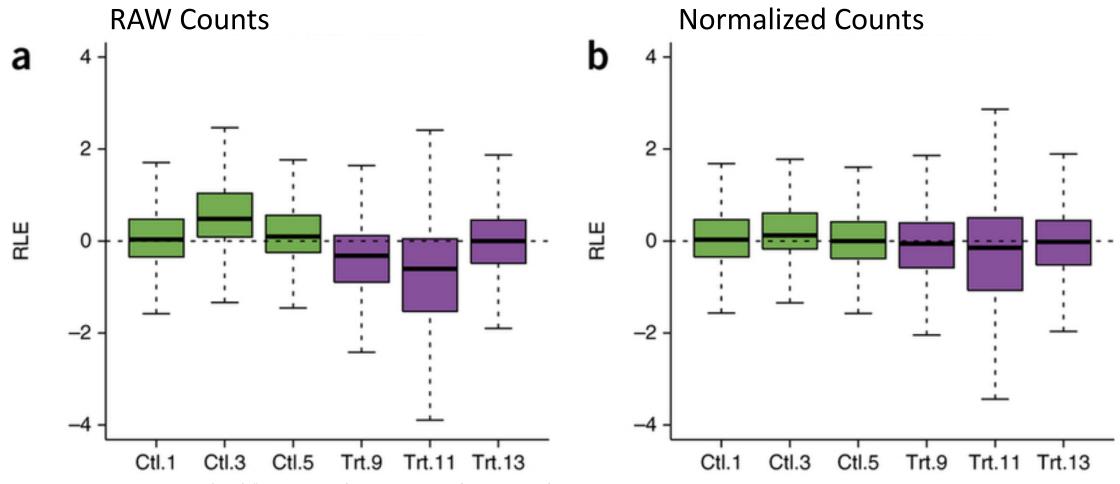
No Standard Method!

QC Visualization: Evaluating Normalization Density Plots – Methylation Array Example



Maksimovic J, Phipson B and Oshlack A. A cross-package Bioconductor workflow for analysing methylation array data [version 3]. F1000Research 2017, 5:1281 (doi: 10.12688/f1000research.8839.3)

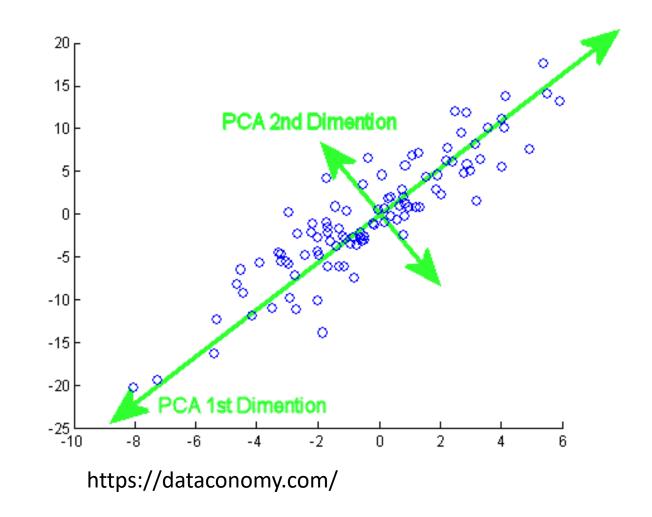
RLE Plots: Relative Log Expression



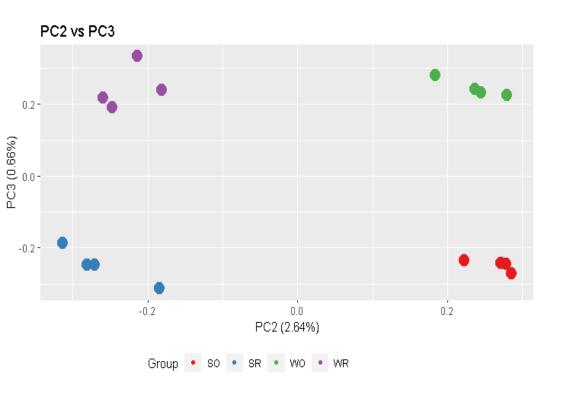
Risso D, Ngai J, Speed T, Dudoit S (2014). "Normalization of RNA-seq data using factor analysis of control genes or samples." *Nature Biotechnology*, **32**(9), 896–902.

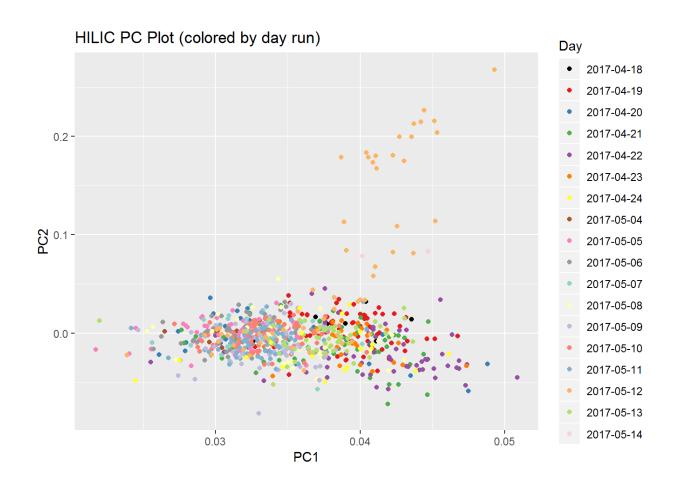
Data Reduction for QC Purposes

- Principal Component Analysis (PCA)
- Factor Analysis
- Singular Value Decomposition (SVD)
- Independent Component Analysis (ICA)



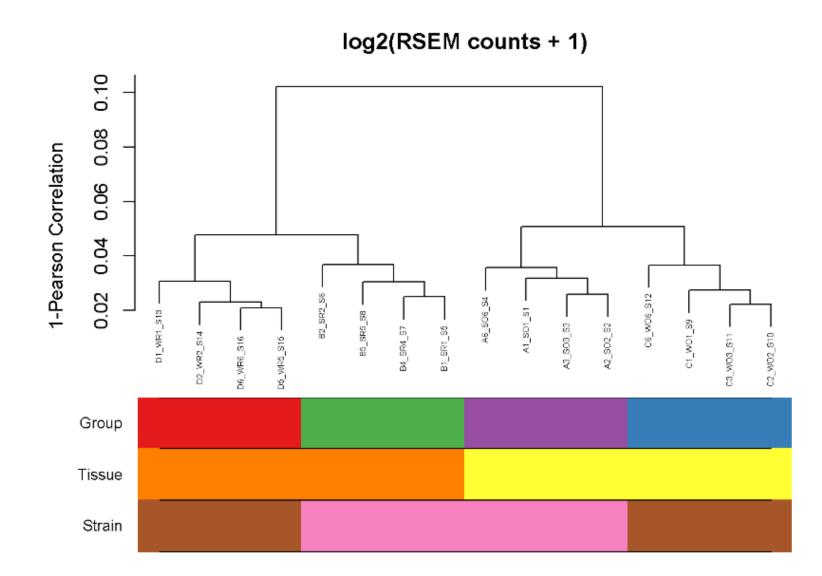
QC PCA Plots





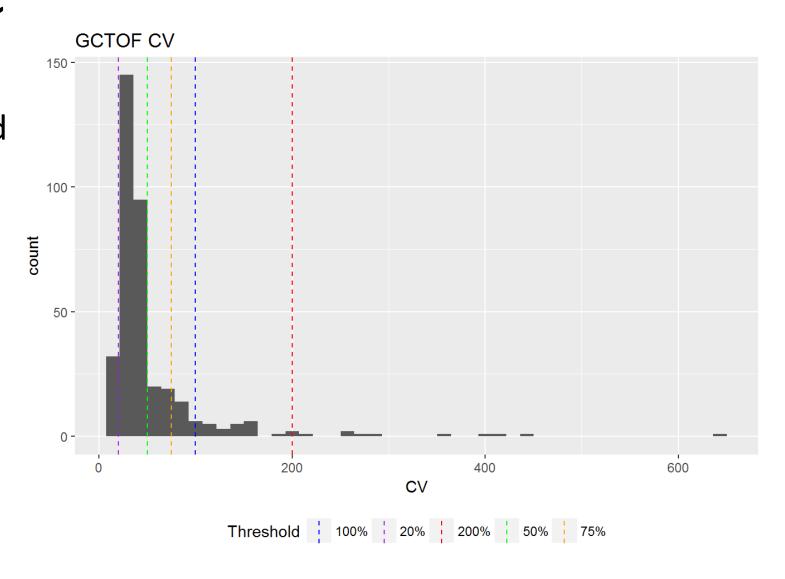
Clustering by biological or technical factors Depending on study design

Sample Level QC: Dendrograms & PC Plots



Feature Level QC

- Detection above background threshold
- Coefficient of variation (CV) threshold
- No set feature QC for any technology

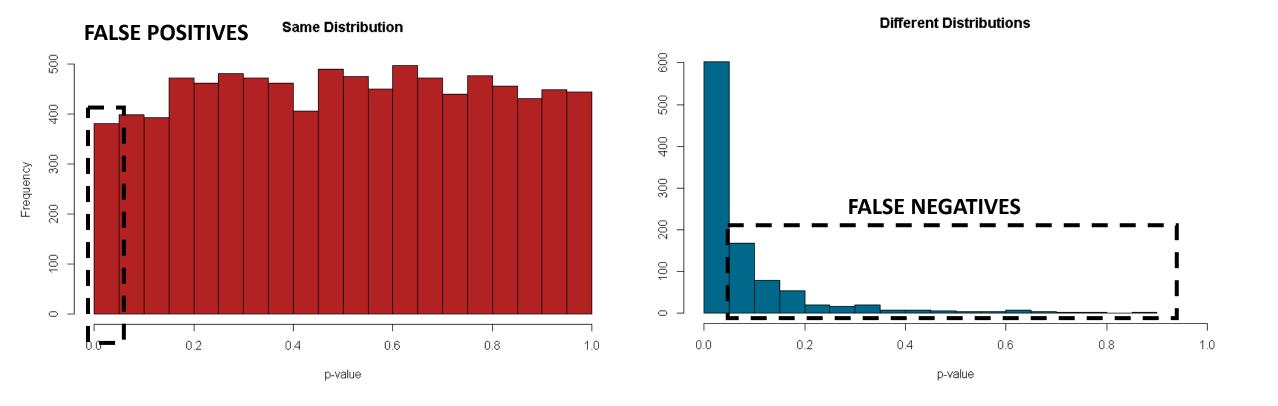


4. Multiple Testing

- Same statistical model on every feature
 - Example: 20,000 genes, then you have 20,000 tests
 - If you leave alpha = 0.05 you would expect 1,000 false positive results (Yikes!)
- Perform correction for multiple testing
- All methods are assuming all tests are independent
- Bonferroni
 - Multiple the p-value by the # of tests performed
 - Most conservative and considered too harsh

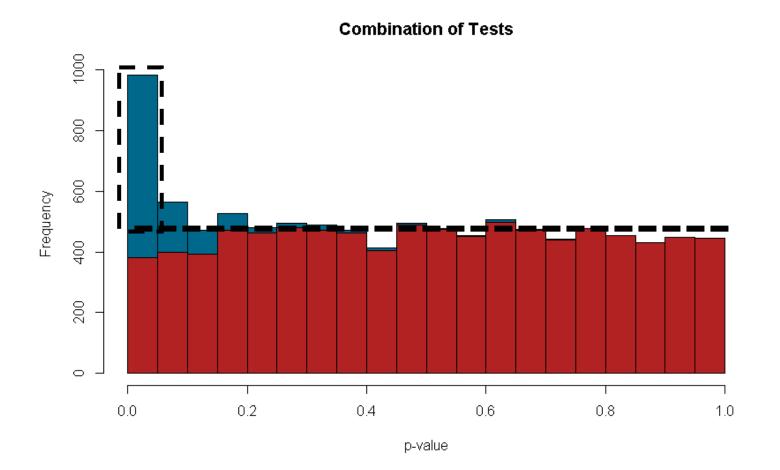
False Discovery Rate (FDR)

Adjusts each p-value differently depending on rank



False Discovery Rate (FDR)

 Tries to estimate your distribution of non-significant p-values (makes power analyses difficult)



5. Enrichment & Over-representation Analysis

- Big picture of system level
- Static (Over-representation)
- Fluid (Enrichment)
 - Gene Set Enrichment Analysis (GSEA)

	Candidates	Genome (background)
In Pathway		
Not in Pathway		

Background Set is Important

- What is present in study sample type
 - Example: if looking at lung tissue you would not expect all genes to be expressed in the lung regardless of study design
- Arrays certain genes are over-represented
 - Various number of probes/gene
 - Example: Illumina's EPIC array there is a range of 1 to 1,487 probes/gene, with a median of 20 probes per gene
 - R/missMethyl takes into account how many probes are designed on array

	Candidates	Genome (background)
In Pathway		
Not in Pathway		

6. Validation

- Reproduce quantitation:
 - High-throughput methods are not the gold standard in quantitation
 - Gene expression: qRT-PCR
 - Methylation: Pyrosequencing
 - Metabolomics: Targeted or internal standard
- Functional validation:
 - Gene knock-down or knock-out methods
 - Use different dataset (publically available) show this effect
- Multi Omics Integration:
 - Gene candidate in both ChIP-Seq and RNA-Seq
 - Correlation among methylation and gene expression
- Journals wanting more validation

7. Discussion: Starting your study

- 1. Talk to core to plan experiment & discuss
 - Technology
 - Protocol options
 - Timeline
 - Sample handling and prep
- 2. Plan for computing needs (software, hardware) & data storage

Discussion: Starting your study

3. Work with CIDA

- More complex study design (e.g., multiple time points, biological/treatment groups)
- More complex analyses (e.g., alternative splicing, transcriptome reconstruction, gene fusion)
- CIDA provides not only analysis support, but also grant support
- 4. Budget time and effort for data analysis (biggest bottleneck)

Discussion