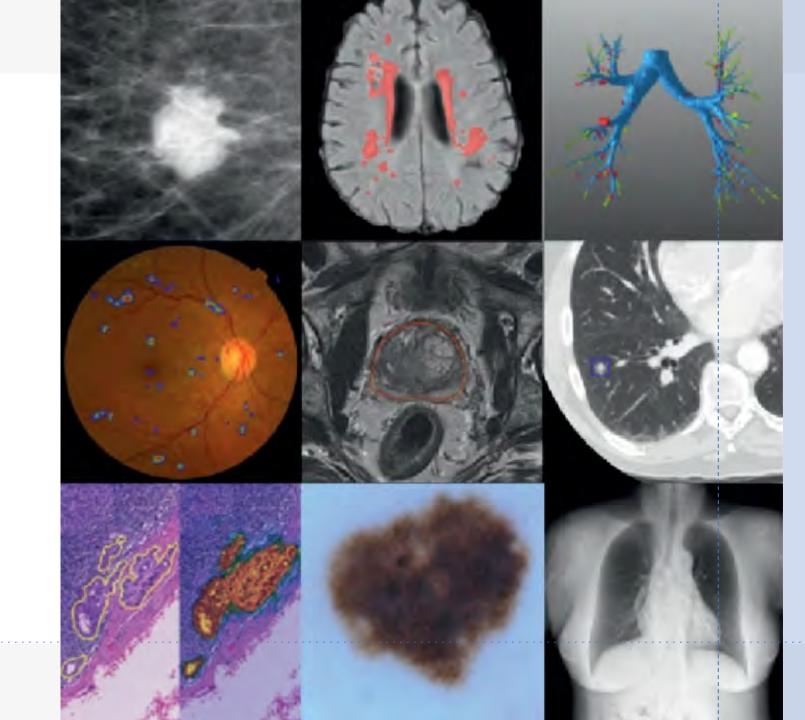
Big Data Seminar on Imaging

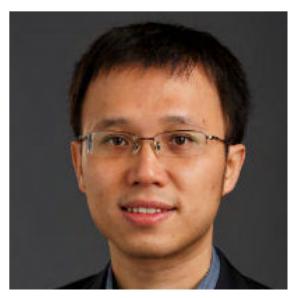
February 18, 2020

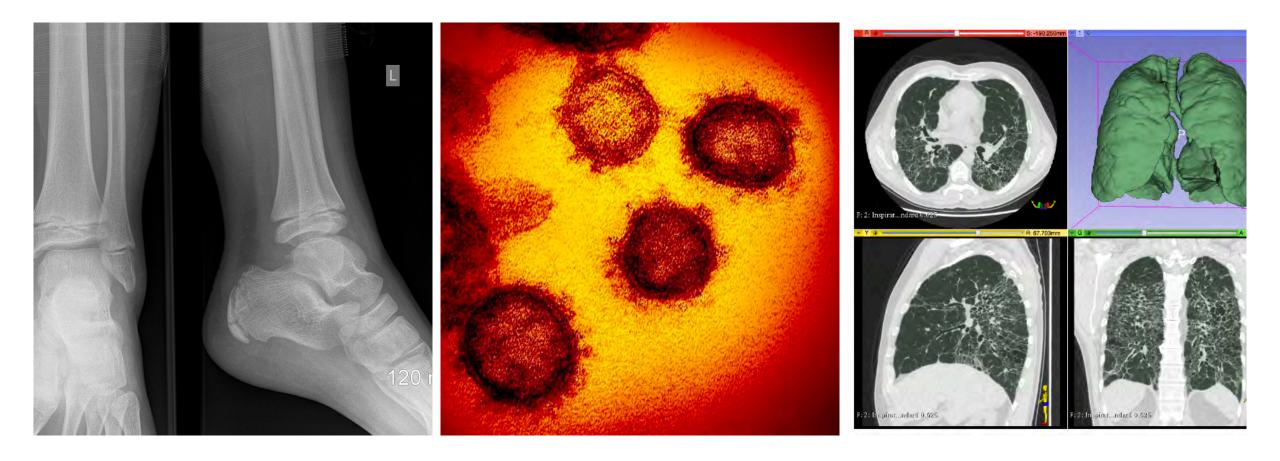
Sponsored by the Biostatistics, Epidemiology, and Research Design (BERD) core of the CCTSI



Overview

- Introduction to Medical Imaging
 - Sarah M. Ryan, PhD Candidate
- Deep Learning and Its Applications in Medical Image Analysis
 - Fuyong Xing, PhD
- Application of Radiomics to Lung Disease to Develop a Novel Biomarker of Sarcoidosis
 - Lisa A. Maier, MD, MSPH, FCCP

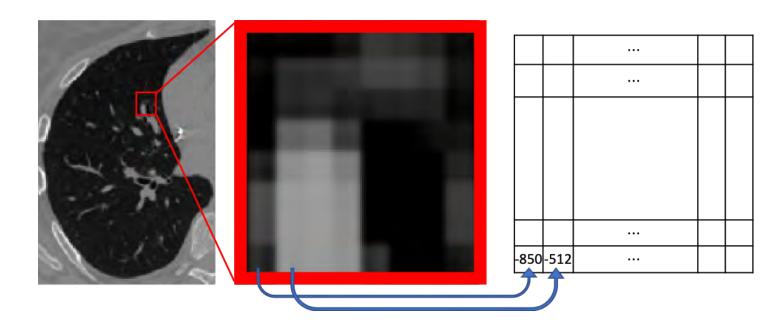




Introduction to Medical Imaging

Imaging Basics

- An image is a visual representation of a mathematical function, say f(x,y), where f may give the intensity or color at point (x,y)
- Each 2D image is comprised of picture elements, called pixels, which form a matrix. In 3D, images are comprised of volumetric elements, called voxels

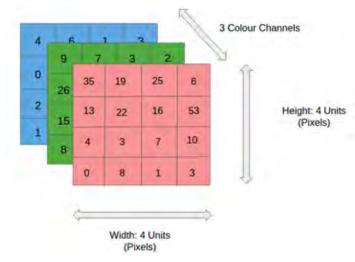


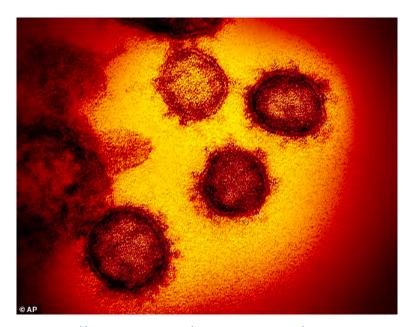
Medical Imaging Modalities

- Technologies that are used to view the anatomical areas in order to diagnose, monitor, or treat medical conditions
- Common imaging modalities include:
 - Microscopy
 - Radiography
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MRI)
- Each modality uses different techniques to represent what we see

Microscopy

- A technique using properties of light to illuminate different cellular structures
- Results in a 2D image
 - Grayscale -> one number per pixel
 - RGB -> 3 numbers per pixel

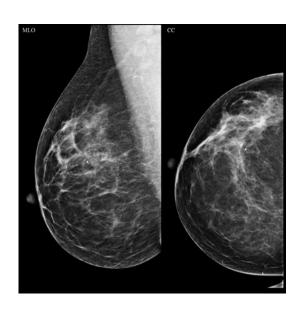




https://www.niaid.nih.gov/diseases-conditions/coronaviruses

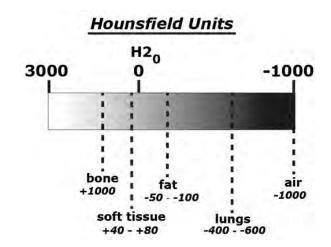
Radiography

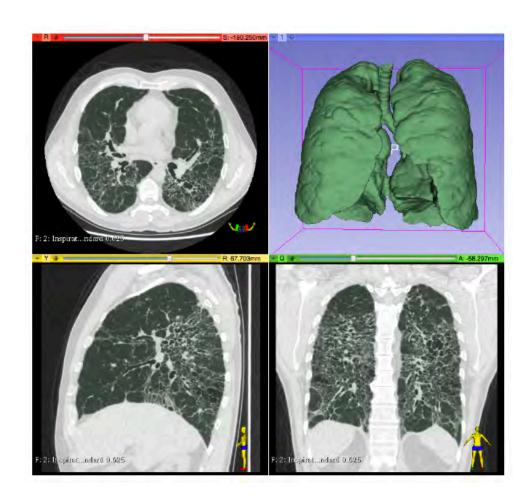
- An imaging technique using x-rays, gamma rays, or similar ionizing (or non-ionizing) radiation to visualize internal anatomical structures
- Commonly used to detect pathology in bones, lungs, and breasts
- Produces a 2D grayscale image



Computed Tomography (CT)

- A computerized x-ray imaging procedure which generates cross-sectional images of the body at various angles
- Results in a 3D image with each voxel corresponding to the radiodensity of tissue, measured in Hounsfield units





Magnetic Resonance Imaging (MRI)

- An imaging procedure which measures the response of atomic nuclei to high-frequency radio waves when placed in a strong magnetic field
- Produces 3D images of internal anatomical structures, commonly brain
 - Structural -> Produces T1 and T2 3D images, corresponding to magnetization states
 - Functional -> Produces multiple 3D images over time

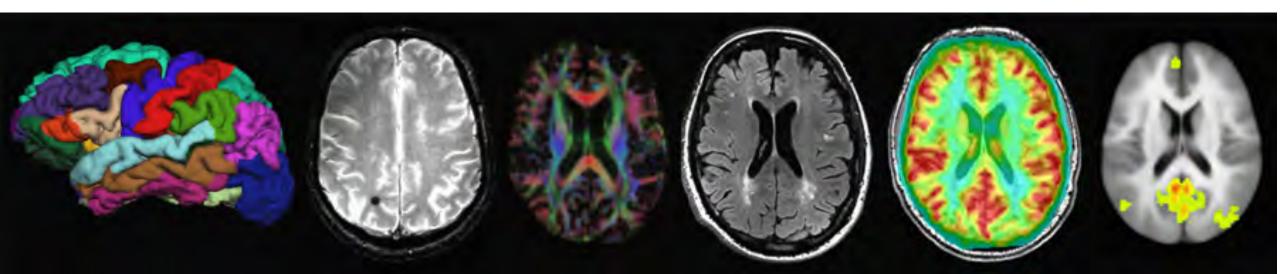
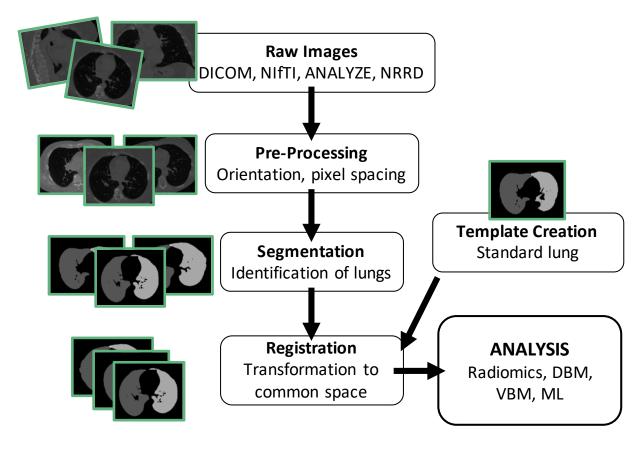


Image Processing

 Image processing techniques are necessary to enhance image features prior to analysis

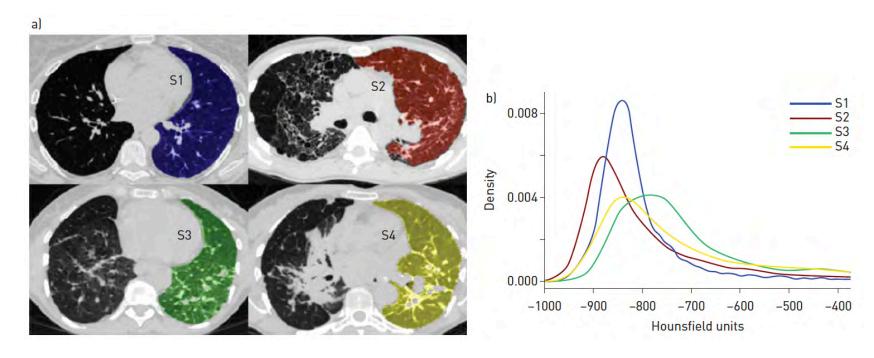
- This may include:
 - Removal of scanner effect
 - Removal of physiological effects (e.g., breathing, heartbeat, movement, etc.)
 - Identification and segmentation of region of interest
 - Alignment of spatial coordinates across images (aka registration)



https://github.com/ryansar/lungct

Image Feature Extraction

 Radiomics - An emerging field in which large numbers of quantitative features are computed from medical images, providing a rapid, objective, and sensitive quantification of abnormalities



Deep Learning and Its Applications in Medical Image Analysis

Fuyong Xing

Department of Biostatistics and Informatics
Colorado School of Public Health
University of Colorado Anschutz Medical Campus

Big Image Data

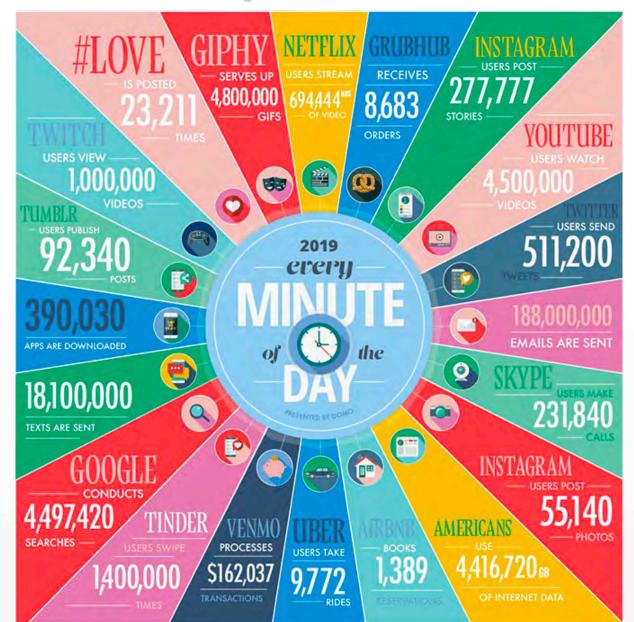
Big Image Data

- ImageNet: a large-scale image dataset for computer vision
- 10,000,000+ labeled images, 20,000+ object categories
- •Annual ILSVRC Challenges (up to 2017):
 - 1000 object categories
 - 1.2M training, 50k validation, and 100k testing images

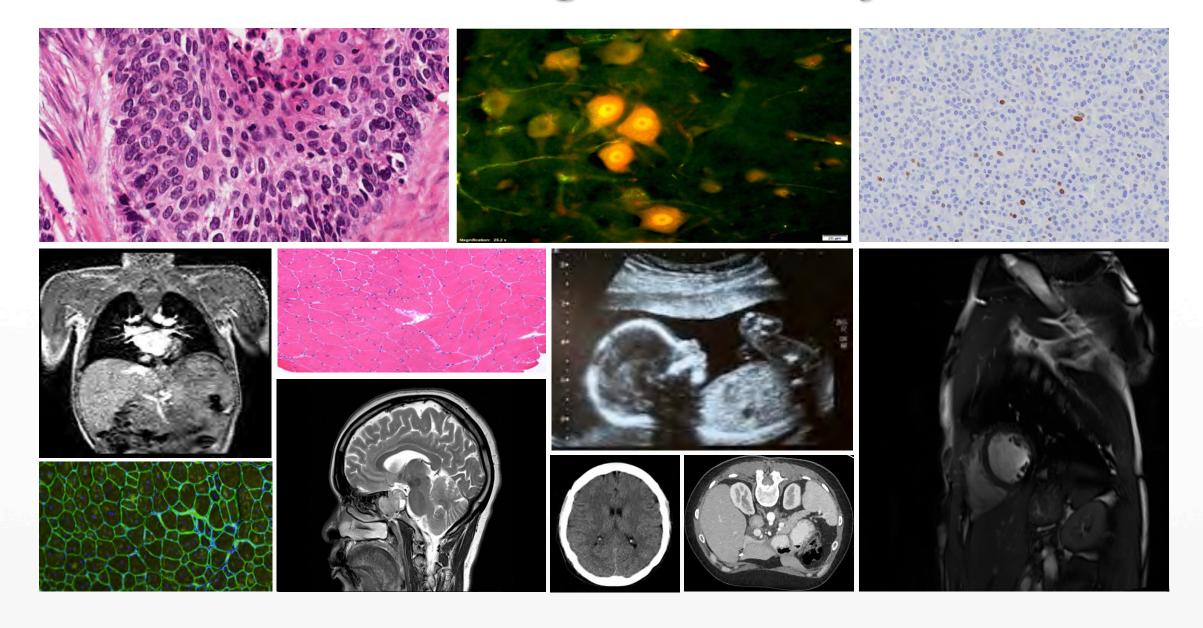
O. Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015

Data Never Sleeps

- •How much data is generated every minute?
 - Instagram: over 55000 photos shared

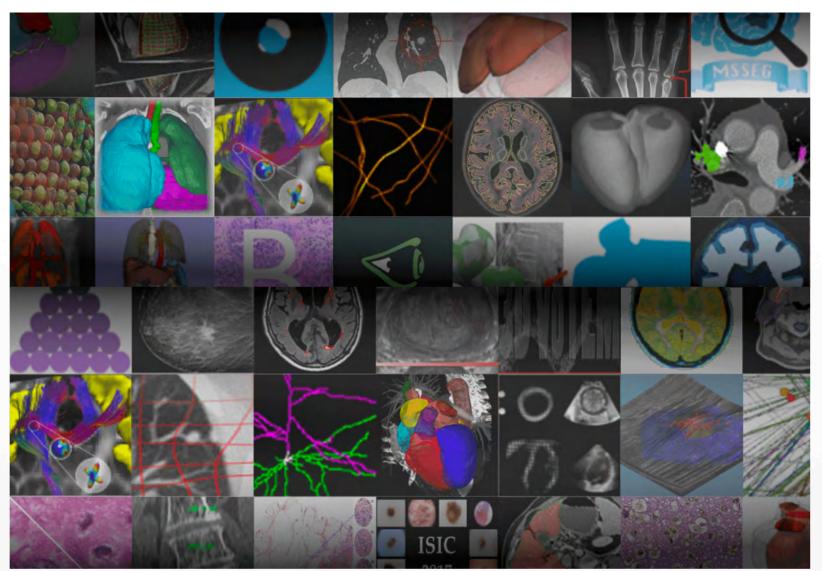


Biomedical Images Are Everywhere

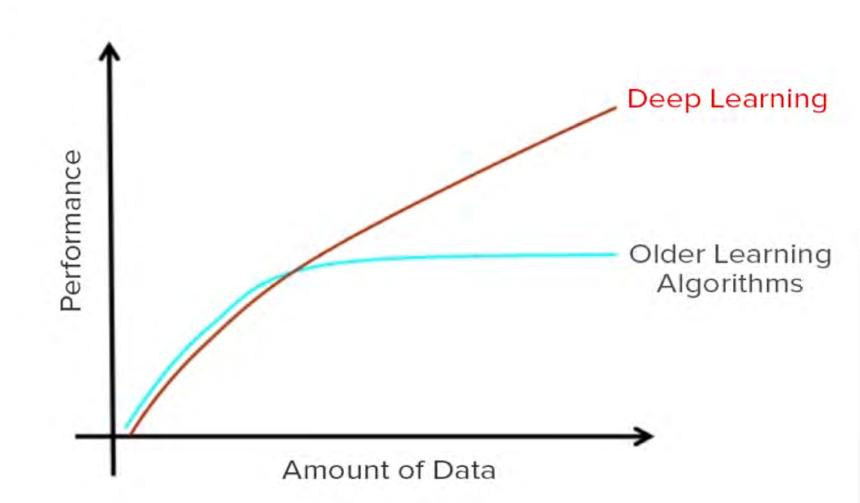


Grand Challenges in Biomedical Image Analysis

https://grand-challenge.org/

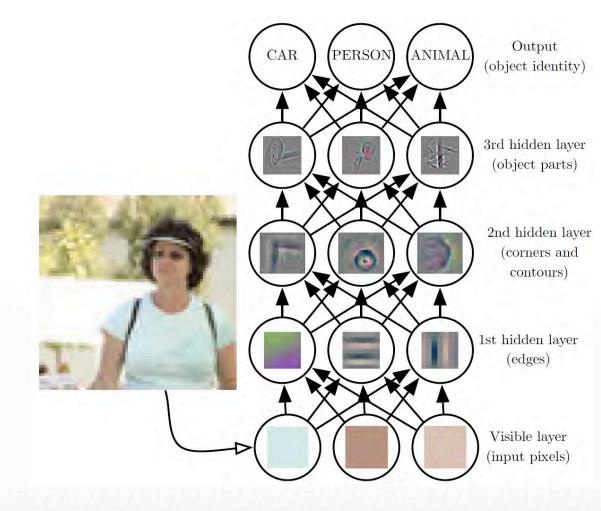


What Methods Used to Analyze Large-**Scale Image Data?**

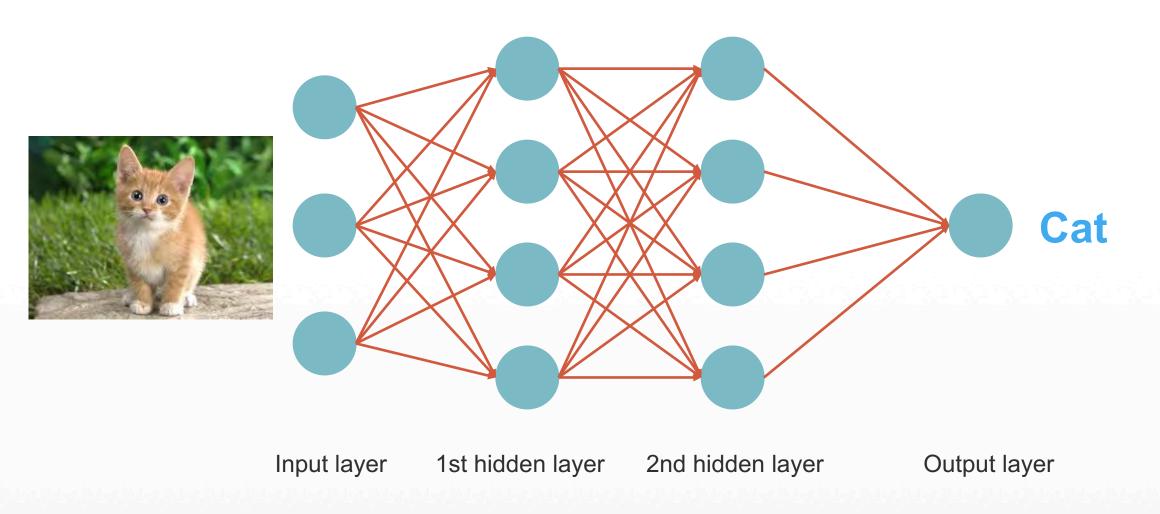


Deep Learning

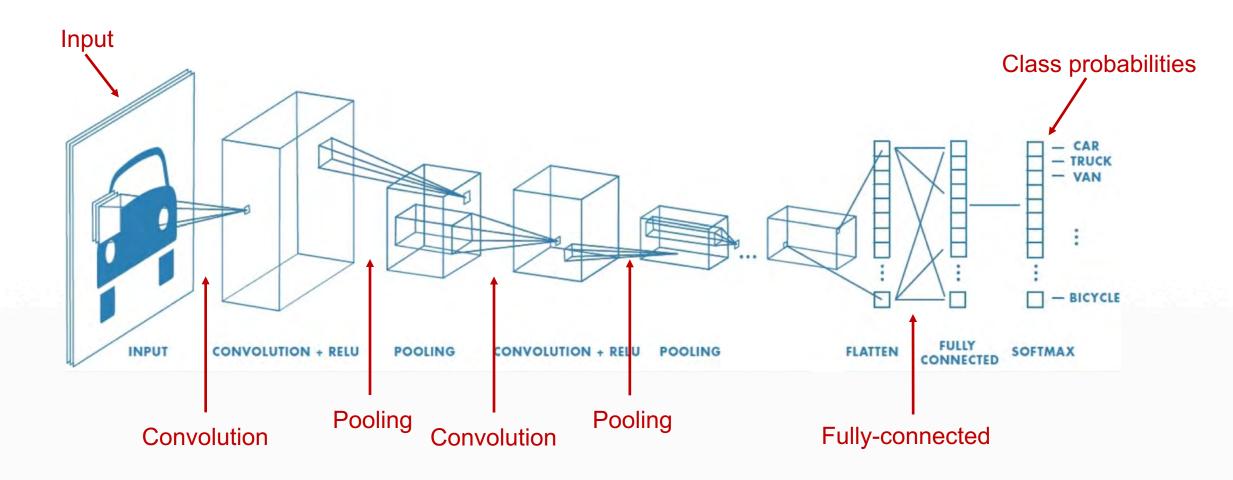
Deep learning is a class of machine learning techniques that exploit multiple layers of nonlinear information processing for supervised or unsupervised feature extraction and transformation, and for pattern analysis and classification.



Deep Fully-connected Neural Network

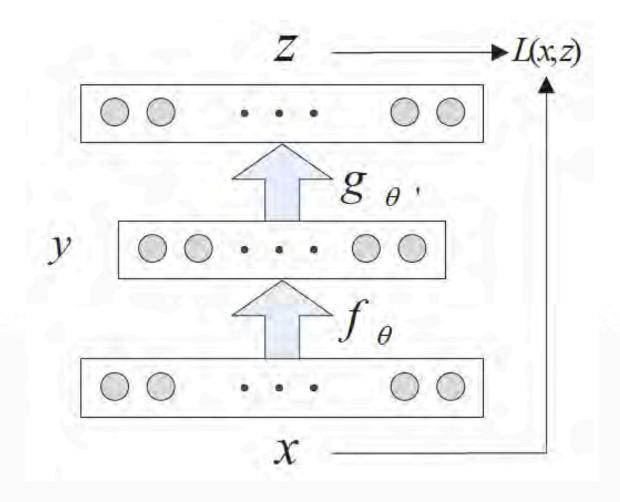


Convolutional Neural network (CNN)



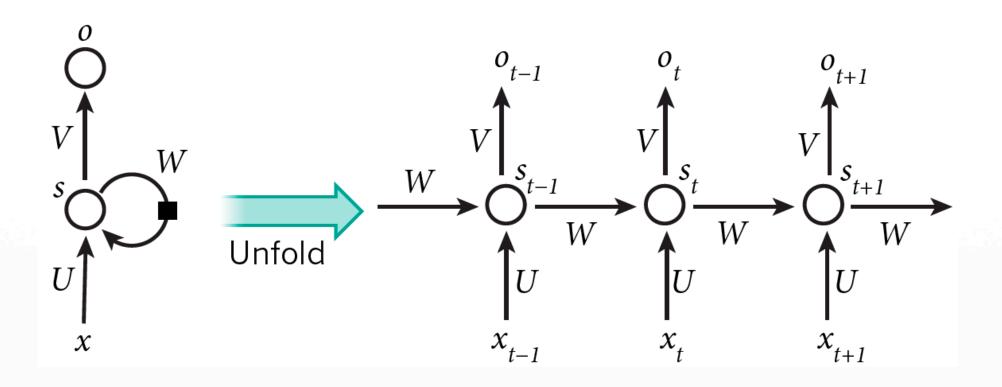
Stacked Autoencoders

- Stacked autoencoders: stack multiple autoencoders to form a multi-layer neural network
- Typically trained in a layerwise fashion: train one layer at a time
- Can be further fine-tuned in a supervised learning manner



An autoencoder

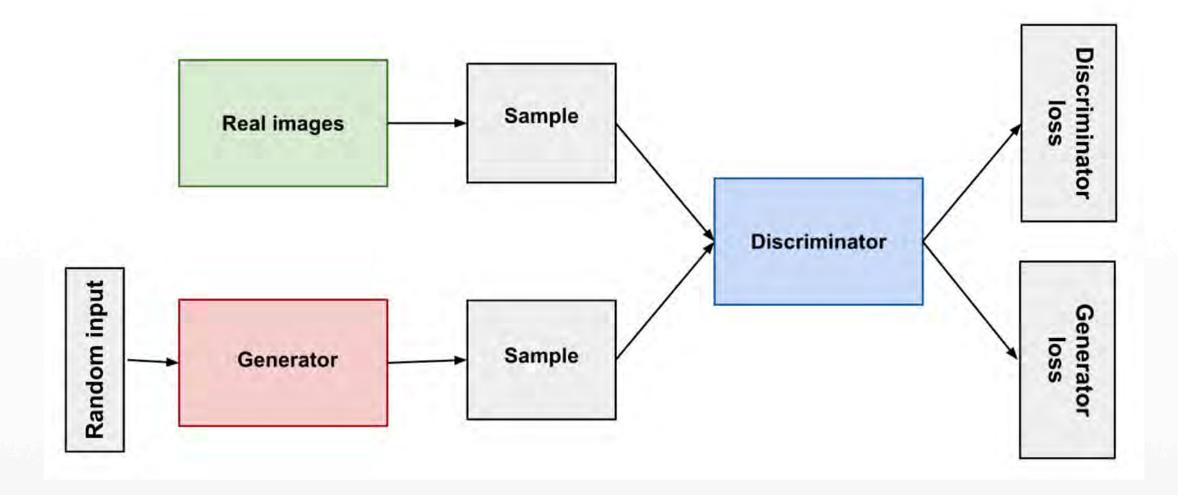
Recurrent Neural Network (RNN)



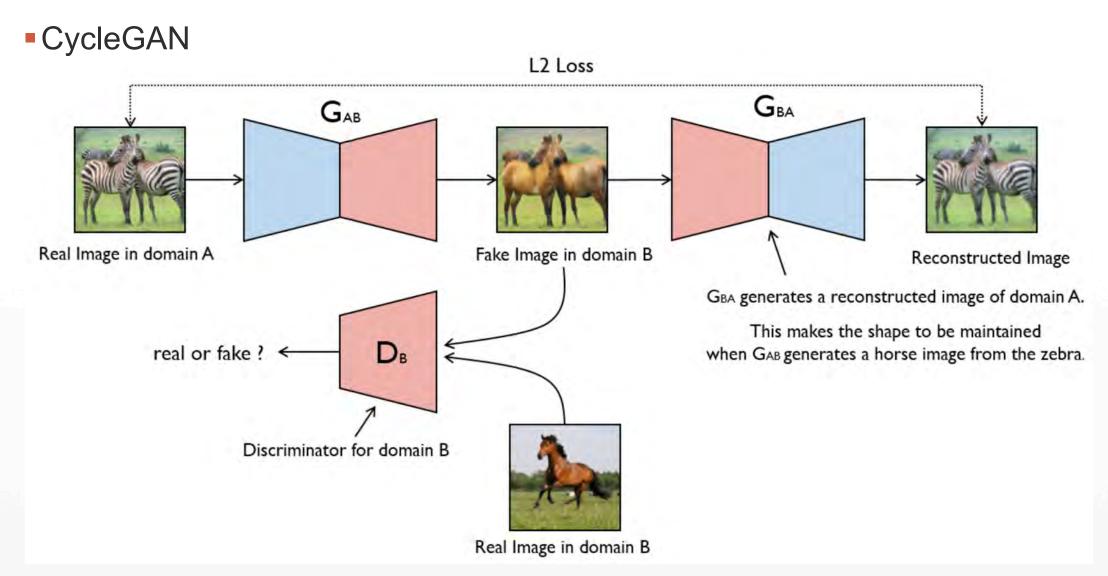
$$s_t = f(Ux_t + Ws_{t-1})$$

$$\sigma_t = g(Vs_t)$$

Generative Adversarial Networks (GANs)



Generative Adversarial Networks (GANs)



I. J. Zhu et al., "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV, 2017

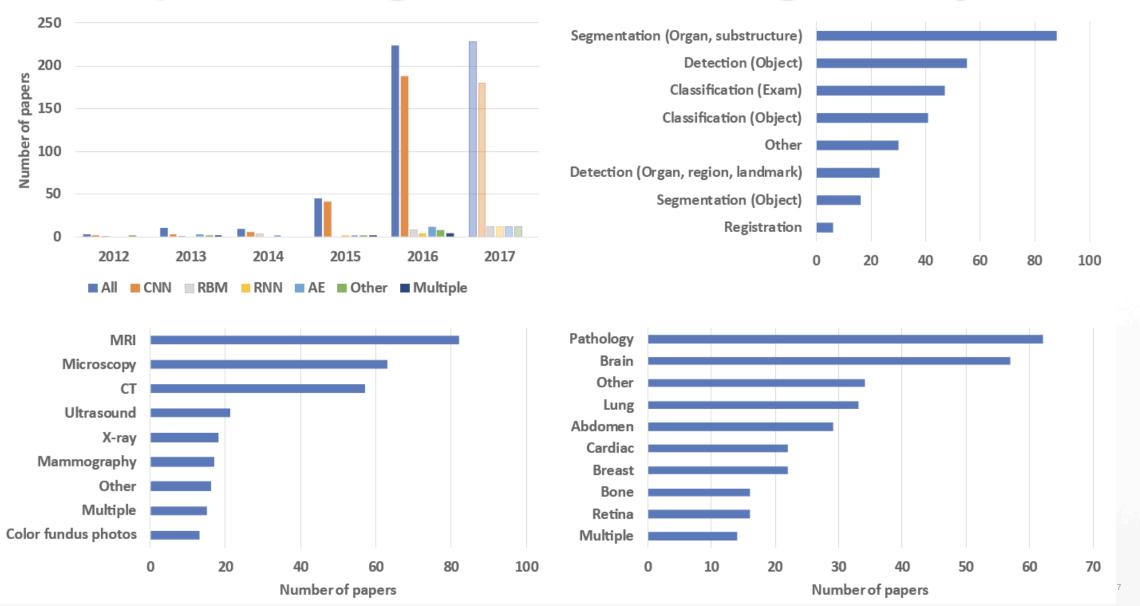
Deep Learning Frameworks

DEEPLEARNING4J

Deep Learning in Medical Image Analysis

- Automated detection of objects, regions, landmarks, etc.
- •Automated segmentation of organs, substructures, etc.
- •Automated classification of objects, diseases, etc.
- Image registration
- Image retrieval
- Biomarker discovery
- Medical Imaging report generation
- More ...

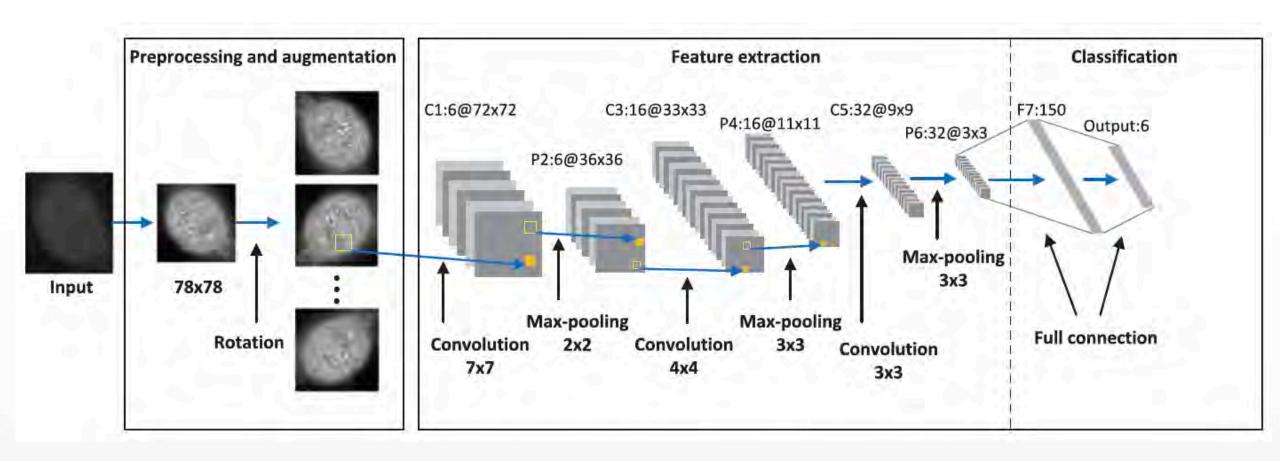
Deep Learning in Medical Image Analysis



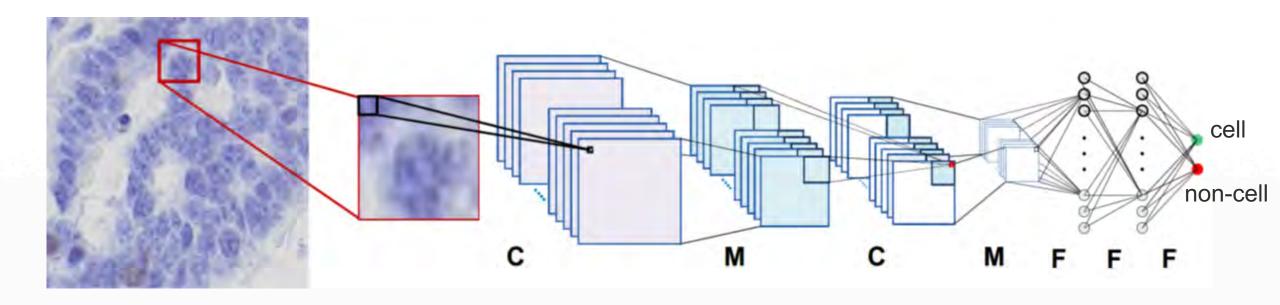
G. Litjens et al., "A survey on deep learning in medical image analysis", Medical Image Analysis, 2017

Image Classification

CNN-based classification of HEp-2 cell images

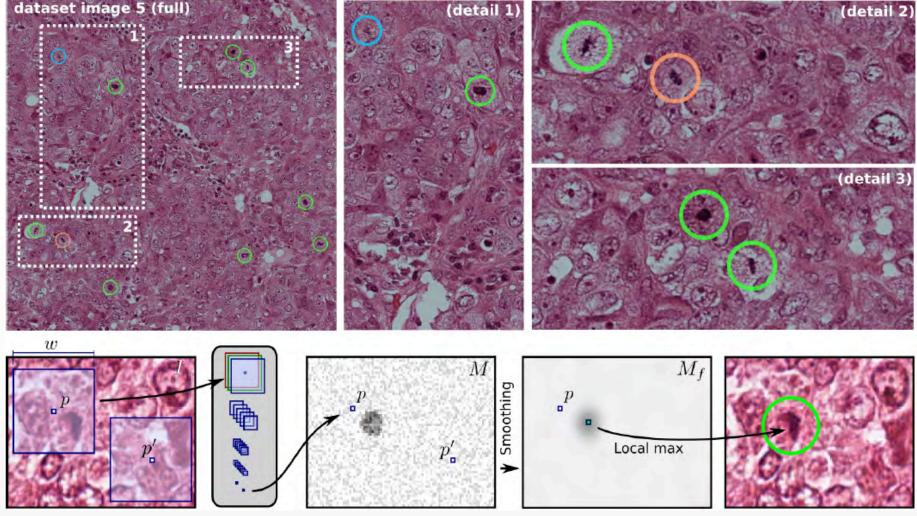


 CNN-based individual nucleus/cell localization in pancreatic neuroendocrine tumor images



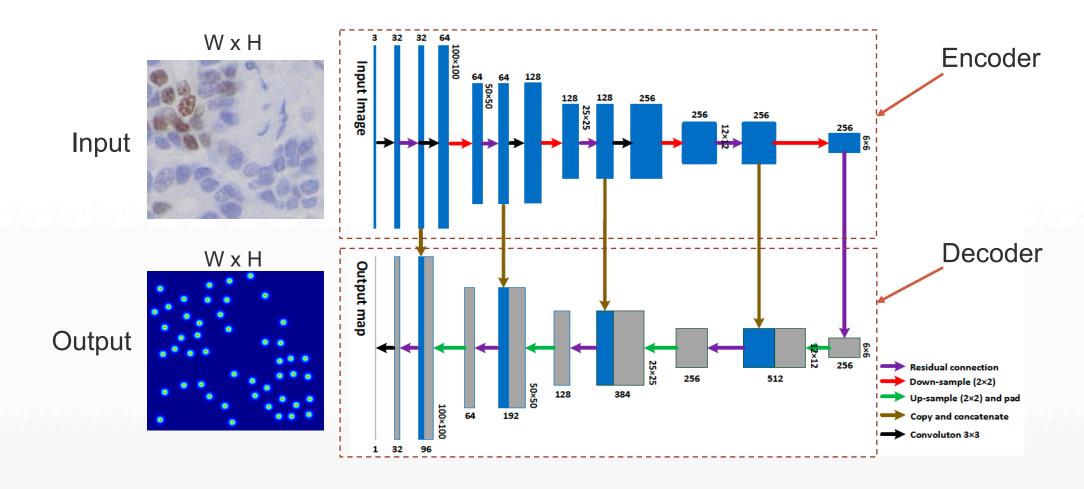
C: convolutional layers; M: max-pooling layers; F: fully-connected layers. The last layer has two units for binary classification.

CNN-based mitosis detection in breast cancer histology images



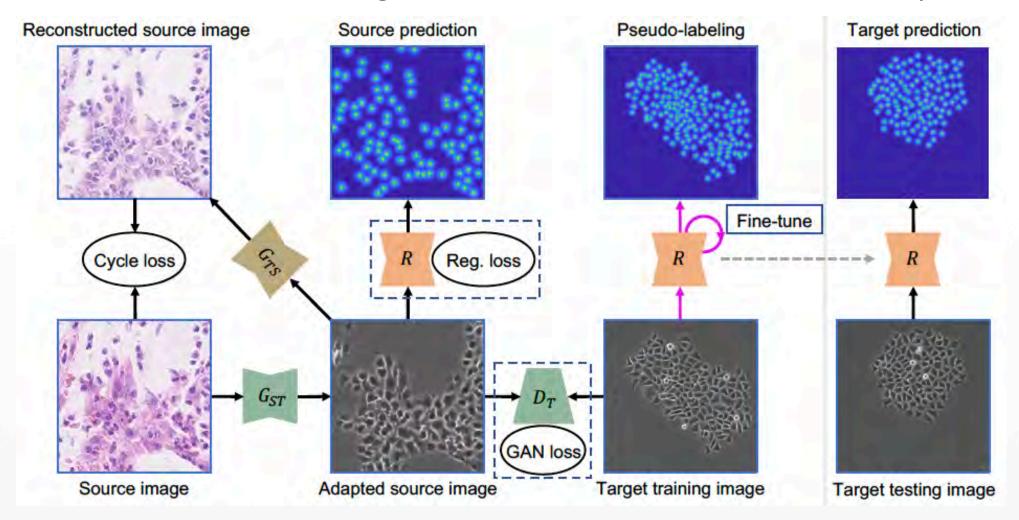
D.C. Ciresan et al., "Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks", MICCAI, 2013

•Nucleus/cell detection with fully convolutional networks



Y.. Xie et al., "Efficient and robust cell detection: A structured regression approach", Medical Image Analysis, 2018

Nucleus/cell detection generative adversarial networks (GANs)



F. Xing et al., "Adversarial Domain Adaptation and Pseudo-Labeling for Cross-Modality Microscopy Image Quantification", MICCAI, 2019

Image Segmentation

 CNN-based neuronal membrane segmentation electron microscopy images

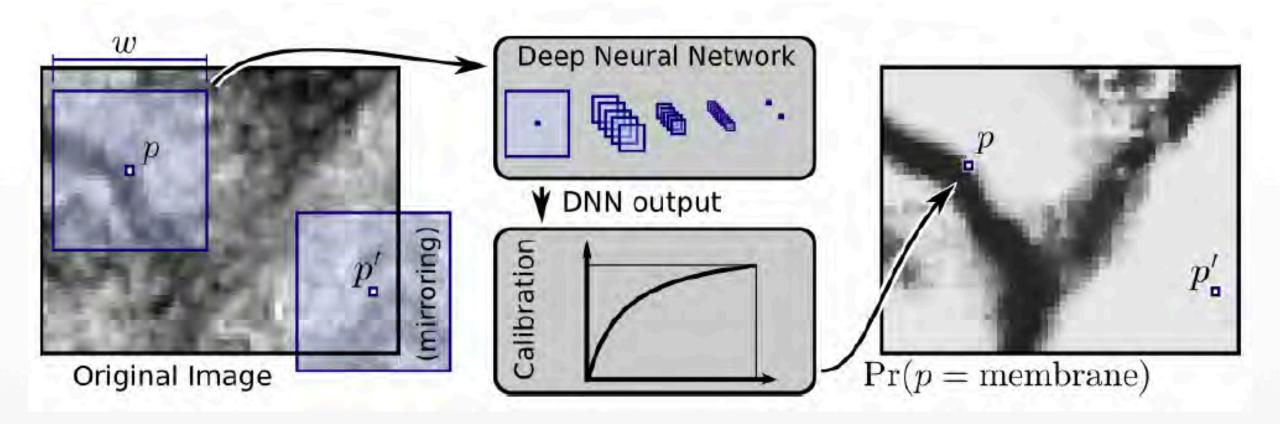


Image Segmentation

Cell segmentation with U-Net (an encoder-decoder network)

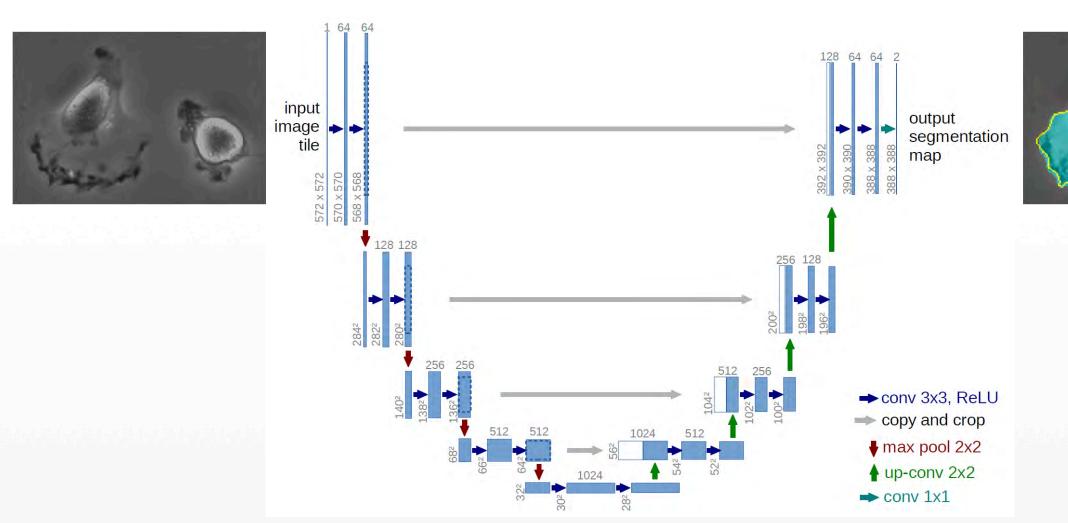
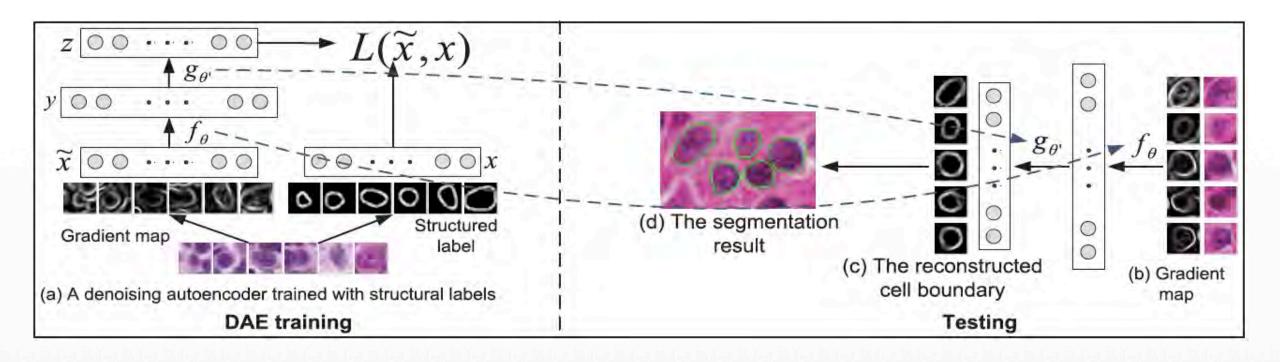


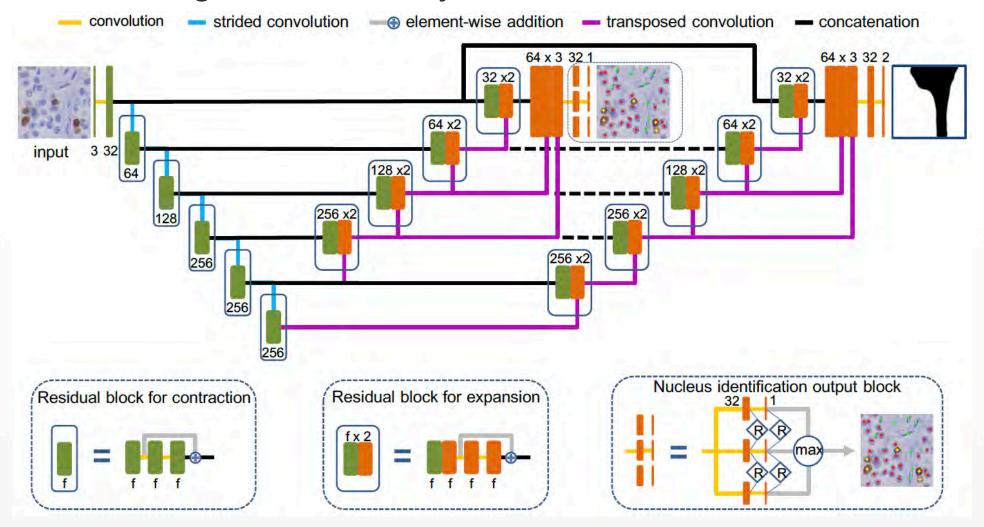
Image Segmentation

 Nucleus segmentation in histopathology images using stacked denoising autoencoders



Object Recognition

Nucleus recognition with fully convolutional networks



26

Object Recognition

Nucleus classification with fully convolutional networks

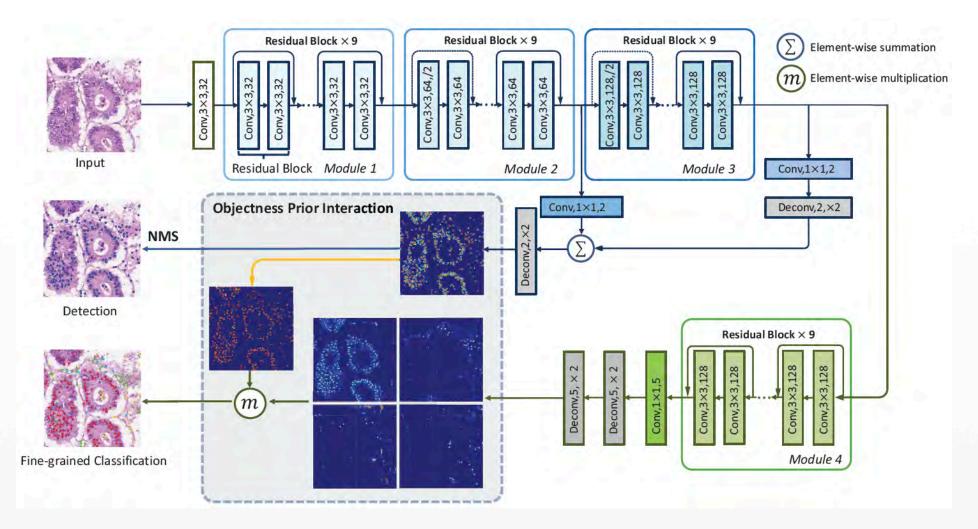


Image Retrieval

Skeletal muscle image retrieval with CNNs

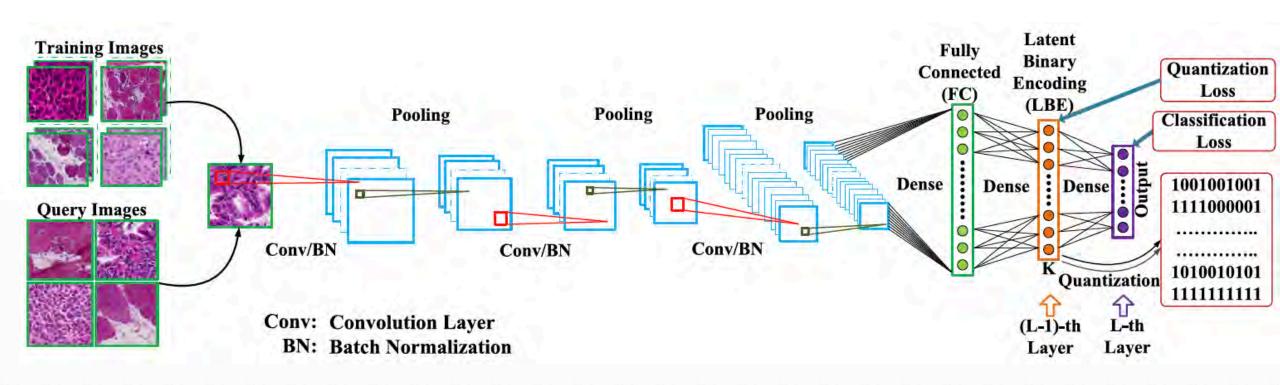
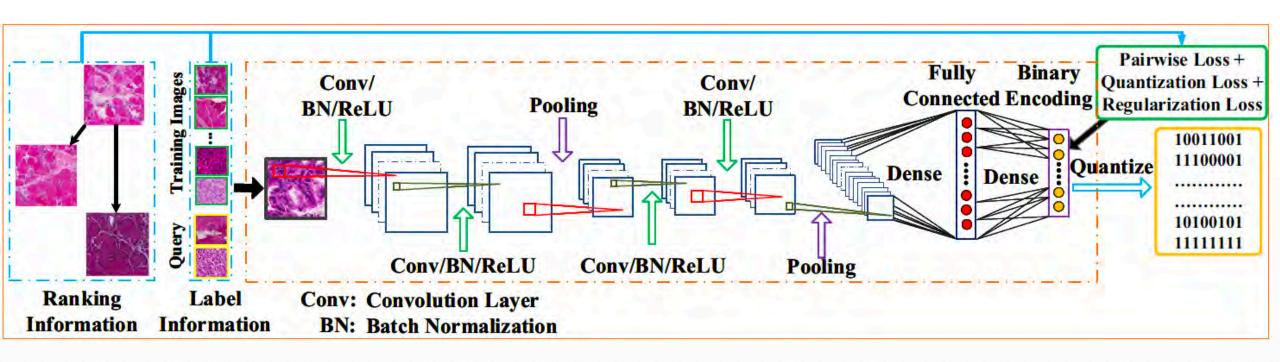


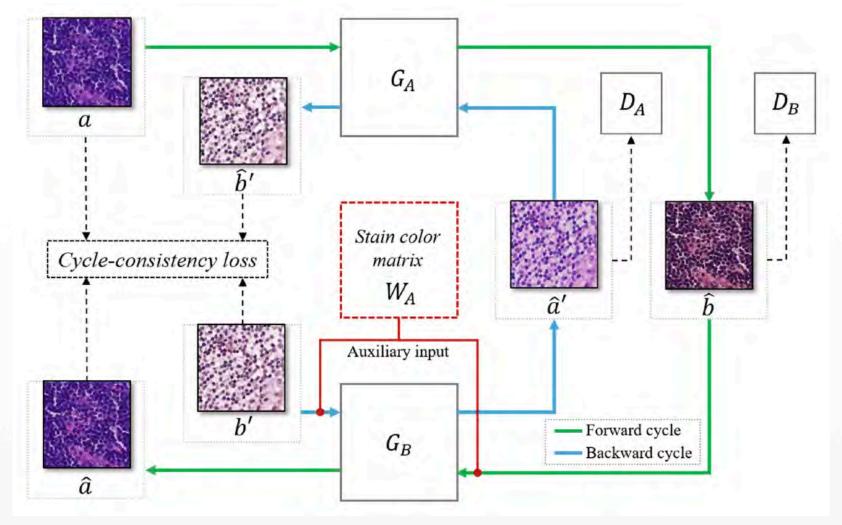
Image Retrieval

Skeletal muscle and lung cancer image retrieval with CNNs



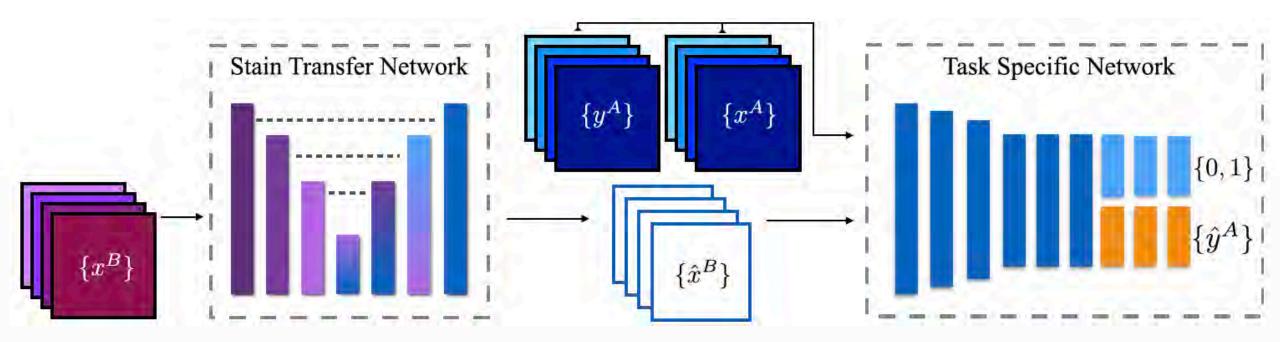
Stain/Color Normalization

Stain/color normalization with generative adversarial networks (GANs)



Stain/Color Normalization

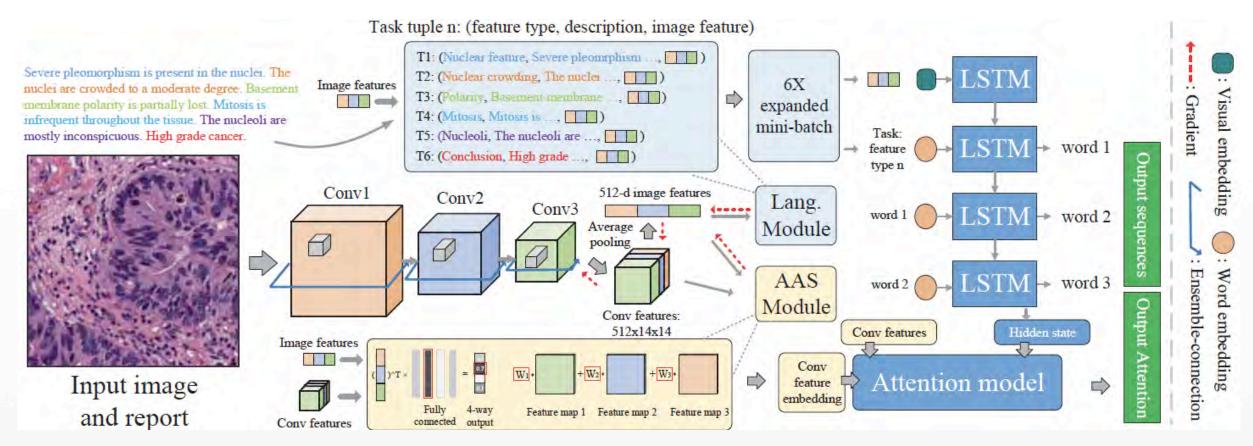
Stain/color normalization with generative adversarial networks (GANs)



Text Generation

Text generation from pathology images

Link: https://www.youtube.com/watch?v=yy7NUrc3KI0



Thank You

Web: https://fuyongxing.github.io

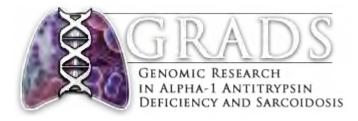
• Email: fuyong.xing@cuanschutz.edu

Address:

Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus

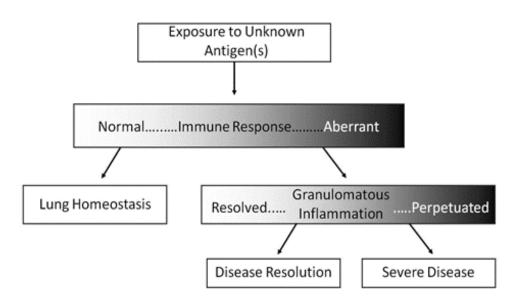
Application of Radiomics to Lung Disease to Develop a Novel Biomarker of Sarcoidosis

Lisa Maier, MD MSPH, Maierl@njhealth.org
Professor and Chief, Division of Environmental and Occupational Health Sciences
National Jewish Health, University of Colorado

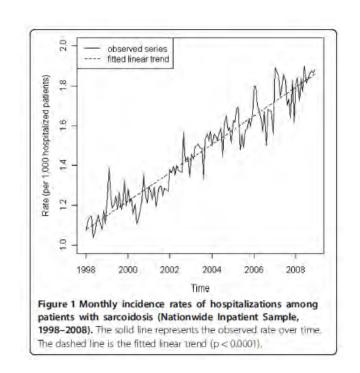


Sarcoidosis

- Burden of disease unknown, but may be increasing
 - Increasing hospitalizations
 - Higher costs of hospitalizations vs non-sarc (Ungprasert Lung 2019)
- NHLBI Symposium "Levaraging Disparities.." (Maier AATS 2017)
 - Conduct "Omics" and systems biology research
 - Develop biomarkers of severe disease
 - Pulmonary, cardiac, neurologic disease



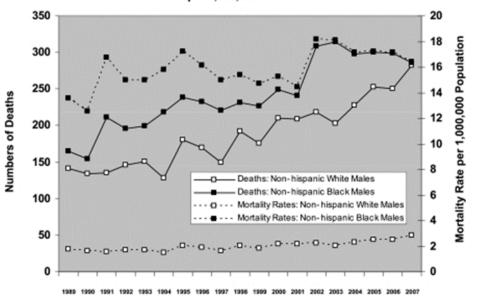
Genetic variants may influence progression from each stage to next



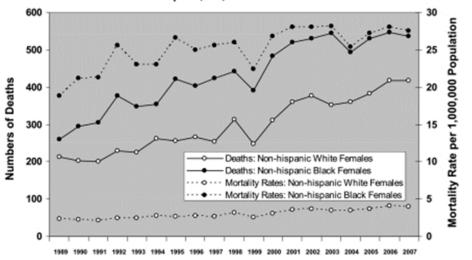
Pulmonary Sarcoidosis

- Primary cause of death
- Impacts individuals in the prime of their lives (mean age at death= 55 years)
- Response to therapy variable
- No definitive prognosticatorsgenetic, genomics proposed
- Designing treatment and longitudinal studies is problematic

Non-hispanic Males: Numbers of Deaths and Age-adjusted Mortality Rates per 1,000,000 Men



B Non-hispanic Females: Numbers of Deaths and Age-adjusted Mortality Rates per 1,000,000 Women



Swigris AJRCCM 2011

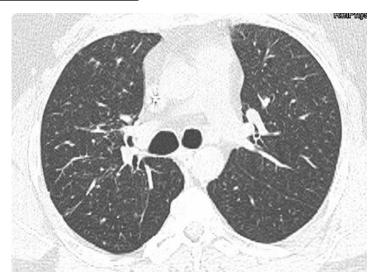
Risk factors for advanced pulmonary sarcoidosis unclear <u>Risk Factors for Disease</u> <u>Persistence</u> <u>Risk Factors for Clinically</u> <u>Bothersome Disease</u>

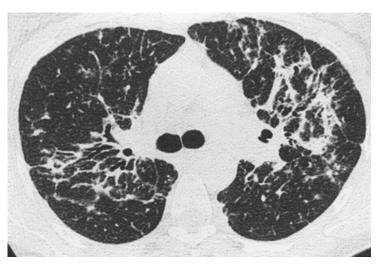
- CXR at presentation
 - Absence of lymphadenopathy
 - Ascending Scadding Stage
- Architectural distortion of the airways or cystic changes
- Multiple organ involvement
- Splenomegaly
- Need for systemic therapy
- Older age
- Female gender
- Black race

- Worse CXR
- Dyspnea at time of diagnosis
- Need for treatment in 1st 6 months
- Multiple organ involvement
- Lower socioeconomic status
- Black race

Biomarkers Diagnosis and Prognosis

- No biomarkers for diagnosis
 - Based on biopsy
 - Diagnosis currently one of exclusion
- No biomarkers to prognosticate patients
 - No predictors severe phenotype
 - Remitting versus progressive types
 - Who will or will not respond to Rx

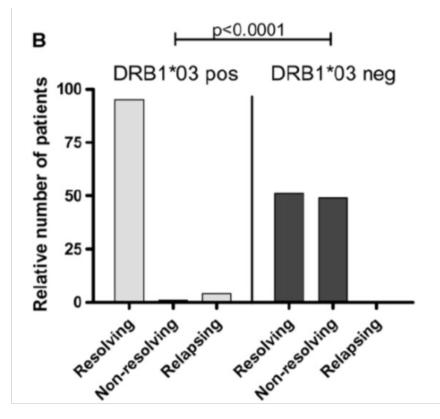




HLA Class II: Ethnicity, Phenotypes and Prognosis

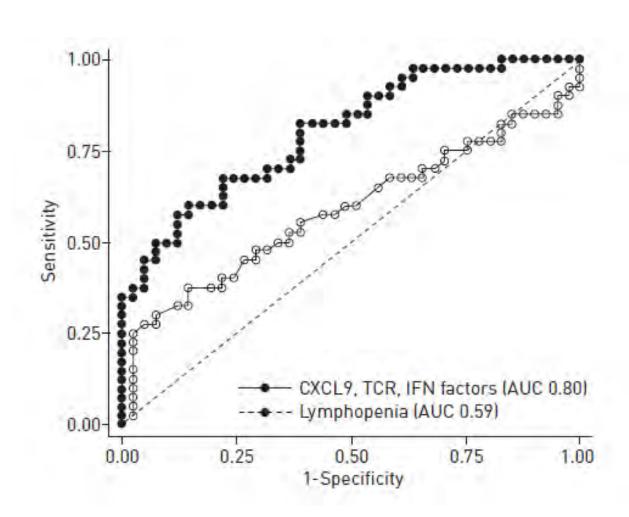
HLA DRB1	Risk	Groups
*0301	Lofgren's	Swedish, Finnish, Dutch
	Protective	AA
	Resolving	Swedish
*1101	Overall Disease	US White, AA, Chinese
	Persistent Disease	AA
*1201	Overall Disease	European, US, AA
	Pulmonary	European, Japanese
*1401	Disease Risk	European, US, AA
	Progressive pulm	European, Scandinavian
*1501	Disease Risk	European, US, AA
	Progressive pulm	Scandinavian

Lofgren's Syndrome



Grunewald AJRCCM 2009

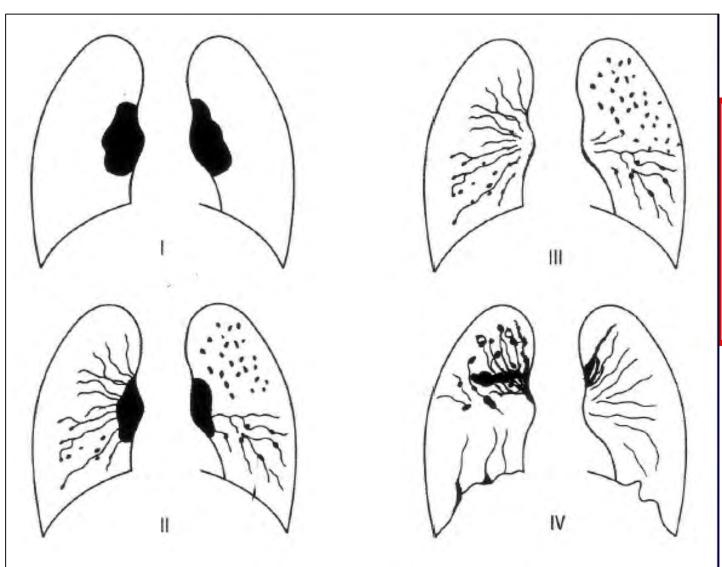
Blood Gene Transcripts Predict Remitting vs Progressive Sarcoidosis



- Su et al identified pathways associated with DE genes IFN, TCR, and CXCL9 in Sarc blood vs controls
- These gene factors act as predictors of disease course in a longitudinal Sarc cohort
- Initial high CXCL9 expression associated w/ more severe disease longitudinally

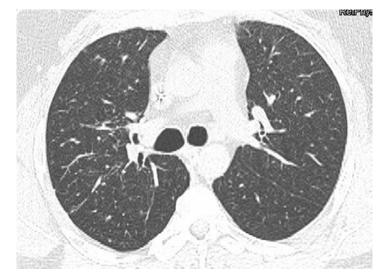
Scadding Staging

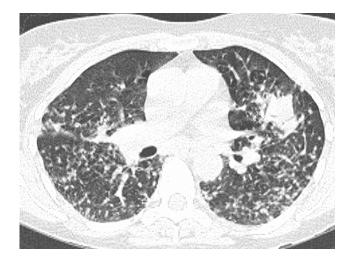
- Prognostic value for remission
- Easy to use

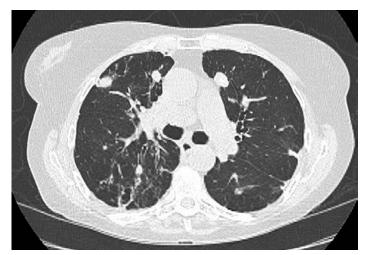


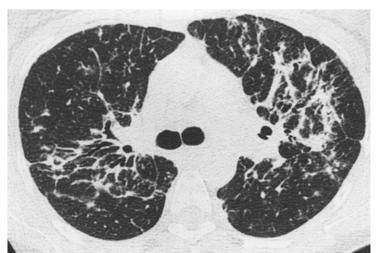
- Not linear
- Interobserver variability
- Low sensitivity/specificity for fibrosis
- Correlation with lung function variable

Variable Manifestations of Sarcoidosis on HRCT

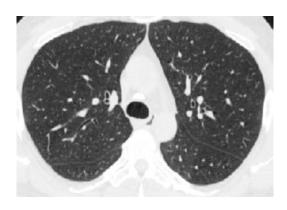








Can information from HRCT better inform disease classification and prognosis?



- Radiomics –extracts large quantities of texture and related measures from medical images
- Good for detecting differences in CT patterns; lung cancer, COPD

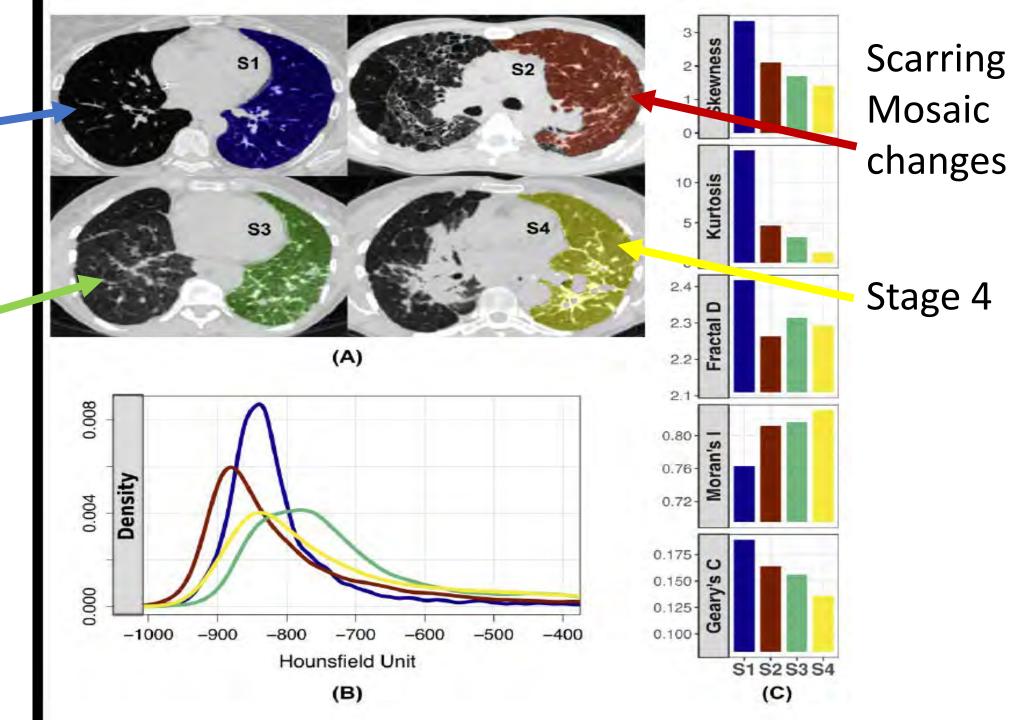
Hypothesis: Detailed radiomic analysis of lung CT images in sarcoidosis will identify new more refined subtypes of pulmonary disease

Study Design:

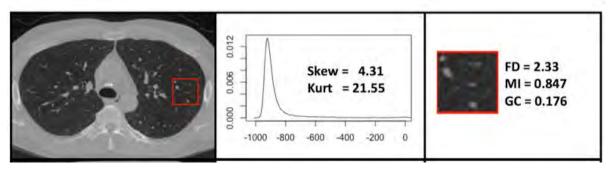
- Exploratory case-control study using NJH GRADS sarcoidosis cases (N=73) and COPD Non-smoking healthy controls (N=78)
- Classification study using only GRADS sarcoidosis cases (N=321)

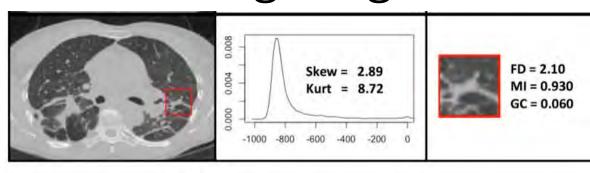
Normal

Nodules • Coalescing



Differences in Radiomic Measures between Sarcoidosis & Controls and Scadding Stage





Healthy	Radiomic Feature	Control	Sarcoidosis	P-value	
		(N = 78)	(N = 73)		
	Skewness	3.615 (0.037)	3.252 (0.064)	<0.001	
	Kurtosis	16.12 (0.299)	13.0 (0.451)	<0.001	
	Fractal D	2.269 (0.005)	2.236 (0.005)	<0.001	
	Moran's I	0.815 (0.002)	0.838 (0.003)	<0.001	
	Geary's C	0.135 (0.002)	0.120(0.002)	<0.001	

Sarcoidosis

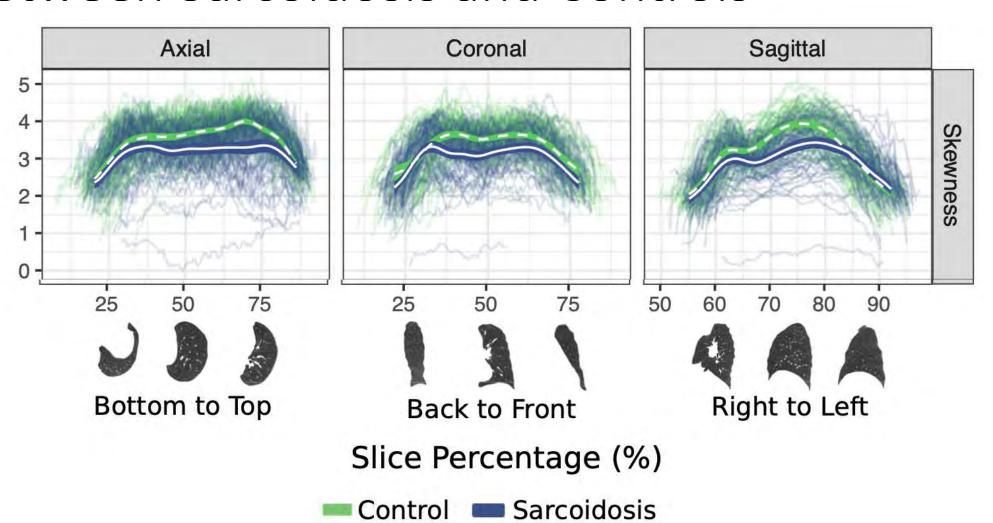
*adj for age, gender, BMI

Ryan ERJ 2019

Differences in Radiomic Measures by Scadding Stage * vs Stage IV; † vs Stage III

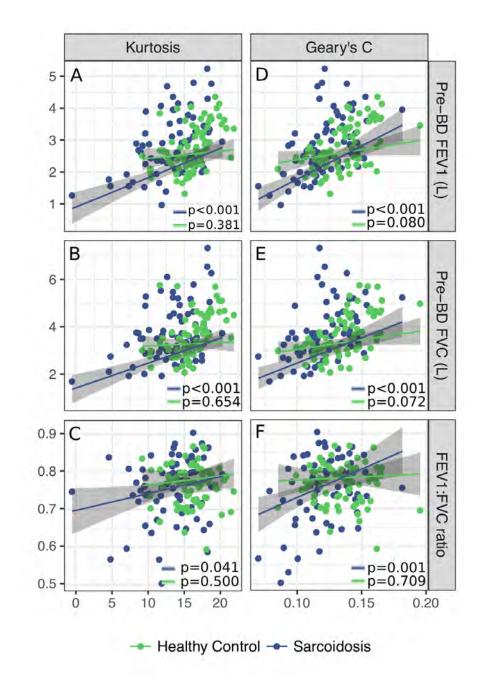
P-value **Radiomic Feature** Stage Stage Stage Stage Stage Ш IV Ш (N = 11)(N = 9)(N = 8)(N = 28)(N = 17)Skewness 3.356 (0.099)* 3.631 (0.072)* $3.301(0.103)^*$ $3.479(0.095)^*$ 2.791 (0.150) < 0.001 Kurtosis 13.71 (0.785)* 16.06 (0.521)* 13.33 (0.769)* 14.65 (0.850)* 9.57 (0.793) < 0.001 Fractal D 2.259 (0.011)* 2.246 (0.008)* $2.234 (0.006)^*$ $2.254(0.015)^*$ 2.210 (0.010) < 0.001 Moran's I 0.827 (0.008)* 0.816 (0.003)* $0.840(0.005)^*$ $0.819(0.007)^*$ 0.863 (0.007) < 0.001 Geary's C $0.131 (0.005)^* 0.126 (0.004)^* 0.117 (0.003)^{*\dagger}$ $0.136(0.007)^*$ 0.105 (0.005) < 0.001

Differences in Spatial Radiomic Measures Between Sarcoidosis and Controls



Spirometry is Associated with Radiomic Measures

- Associations stronger and statistically associated with sarcoidosis compared to controls
- Radiomics explained 70.3% of the variability in FVC vs 51.4% for Scadding staging alone



Developing New Radiomic Phenotypes

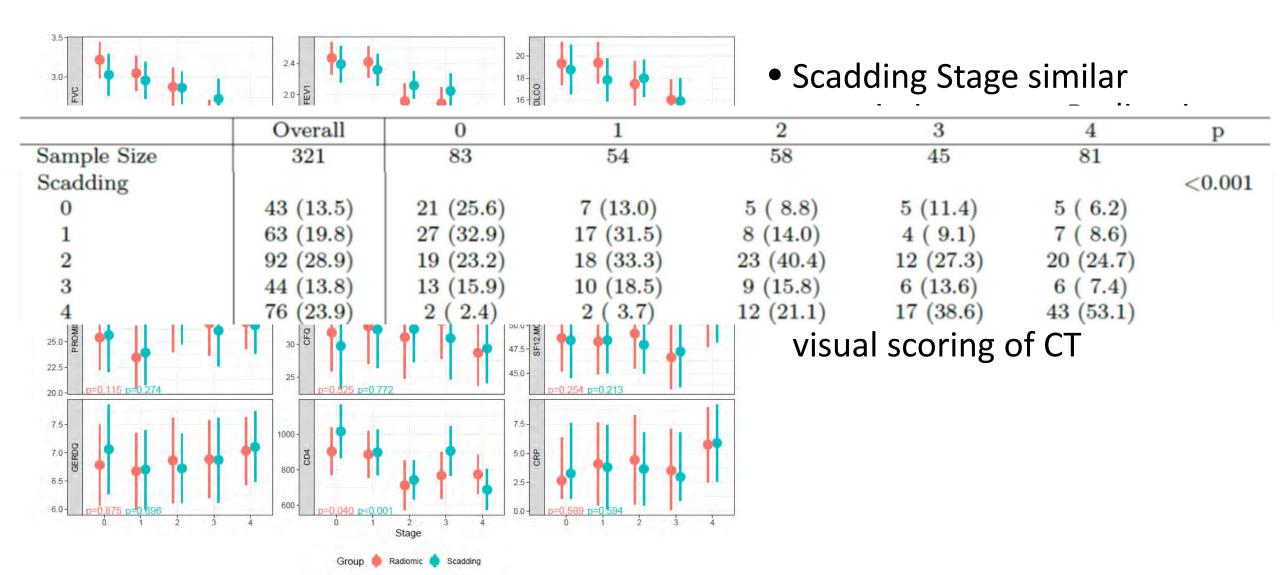
- Entire GRADS Cohort
- Used first and second order radiomic features from each lung
- Corrected for Scanner Effect
- K-means variable selection clustering- for high dimensional, dependent data
- Gap statistic to determine the optimal number of clusters n=5
- Describe clinical aspects of clusters: Lung Function, Qs, Biomarkers
- Compare to Scadding Stage

Cluster Analysis of Radiomic Features: 5 clusters

	Overall	0	1	2	3	4	p
Sample Size	321	83	54	58	45	81	•
Âge	52.91 (9.91)	53.28 (9.96)	49.76 (10.97)	52.49 (10.36)	52.56 (8.86)	55.12 (8.92)	0.043
Sex	147 (45.8)	44 (53.0)	20 (37.0)	26 (44.8)	17 (37.8)	40 (49.4)	0.286
Race		, ,	, ,	, ,	,	, ,	0.005
White	233 (73.0)	72 (87.8)	42 (77.8)	38 (66.7)	34 (75.6)	47 (58.0)	
Black	77 (24.1)	8 (9.8)	12 (22.2)	16 (28.1)	10 (22.2)	31 (38.3)	
Other	9 (2.8)	2 (2.4)	0 (0.0)	3 (5.3)	1 (2.2)	3 (3.7)	
Height	66.98 (4.16)	67.83 (4.55)	66.72 (4.04)	66.43 (3.93)	66.76 (4.09)	66.81 (3.98)	0.293
BMI	30.62 (6.49)	32.89 (6.04)	29.36 (6.84)	32.51 (6.33)	26.88 (5.98)	29.84 (5.89)	< 0.001
Scadding							< 0.001
0	43 (13.5)	21 (25.6)	7 (13.0)	5 (8.8)	5 (11.4)	5 (6.2)	
1	63 (19.8)	27 (32.9)	17 (31.5)	8 (14.0)	4 (9.1)	7 (8.6)	
2	92 (28.9)	19 (23.2)	18 (33.3)	23 (40.4)	12 (27.3)	20 (24.7)	
3	44 (13.8)	13 (15.9)	10 (18.5)	9 (15.8)	6 (13.6)	6 (7.4)	
4	76 (23.9)	2 (2.4)	2 (3.7)	12 (21.1)	17 (38.6)	43 (53.1)	

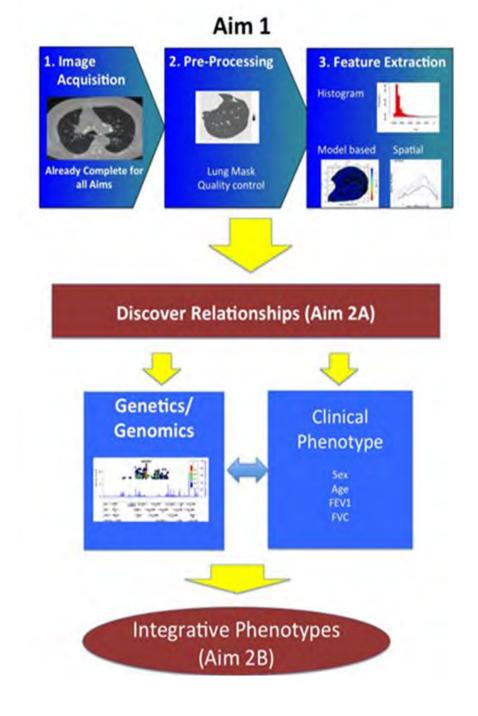
Demographics ordered from least severe (0) to most severe (4) based on FVC percent predicted.

Clinical Aspects of "Radiomic Biomarker" Class



Future Directions: Integrated Biomarker of Sarcoidosis

- GRADS Cohort
 - Visual Scores- 2 readers
 - BAL transcriptome
 - GWAS data
- Validation cohort NJH and CCF
- Determine function over time



Conclusions:

- Radiomic analyses of Sarcoidosis Chest CT :
 - Differentiates cases and controls
 - Associate with lung function and PROs
 - Classify sarcoidosis subtypes and may be useful as a biomarker
- Potential as a biomarker to augment and or standardize use of CT in clinic
- Integrative Omics approaches show promise
- There is now publicly-available, open-source software to perform many of these analyses for your own data

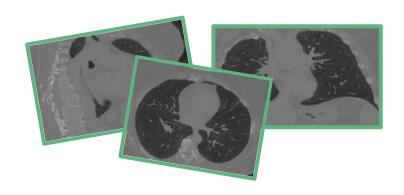
Processing Chest CTs

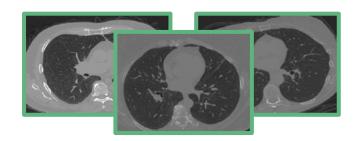
Software: lungct R package

https://github.com/ryansar/lungct

Functionality

- Convert DICOM to NIfTI
- 2. Resample to 1x1x1 mm³
- 3. Segment the left and right lungs
- 4. Calculate radiomic features on 2D slice or 3D lung
- 5. Register lungs to the standard lung template
- 6. Create study-specific templates
- 7. Calculate the amount of lung shrinkage
- 8. And more!





Acknowledgements

National Jewish Health

- Tasha Fingerlin, PhD
- Clara Restrepo, MD
- Li Li, MD PhD
- Nabeel Hamzeh, MD
- Shu-Yi Liao MD, ScD
- Andy Levy, MD
- Peggy Mroz, MSPH
- Bri Barkes, MPH
- Christina Riley
- May Gillespie
- Kristyn MacPhail
- Jill Elliott

UCD

- Nichole Carlson, PhD
- Sarah Ryan, MS, PhD Student

<u>CCF</u>

Dan Culver, MD

NIH:

1R01 HL114587

1R01 HL142049

UL 1TR002535

U01 HL112695, U01 HL112707

Our patients!

